Home
Class 14
MATHS
(sinA+sin3A+sin5A+sin7A)/(cosA+cos3A+cos...

`(sinA+sin3A+sin5A+sin7A)/(cosA+cos3A+cos5A+cos7A)` is :

A

`tan 2A`

B

`tan3A`

C

`tan4A`

D

`tan8A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sin A + \sin 3A + \sin 5A + \sin 7A) / (\cos A + \cos 3A + \cos 5A + \cos 7A)\), we can follow these steps: ### Step 1: Group the Sine Terms We can group the sine terms as follows: \[ \sin A + \sin 7A + \sin 3A + \sin 5A \] This allows us to use the sine addition formula. ### Step 2: Apply the Sine Addition Formula Using the formula \(\sin x + \sin y = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)\): - For \(\sin A + \sin 7A\): \[ \sin A + \sin 7A = 2 \sin\left(\frac{A + 7A}{2}\right) \cos\left(\frac{7A - A}{2}\right) = 2 \sin(4A) \cos(3A) \] - For \(\sin 3A + \sin 5A\): \[ \sin 3A + \sin 5A = 2 \sin\left(\frac{3A + 5A}{2}\right) \cos\left(\frac{5A - 3A}{2}\right) = 2 \sin(4A) \cos(A) \] ### Step 3: Combine the Sine Terms Now we can combine the results: \[ \sin A + \sin 7A + \sin 3A + \sin 5A = 2 \sin(4A) \cos(3A) + 2 \sin(4A) \cos(A) \] Factoring out \(2 \sin(4A)\): \[ = 2 \sin(4A) (\cos(3A) + \cos(A)) \] ### Step 4: Group the Cosine Terms Now, let's group the cosine terms: \[ \cos A + \cos 3A + \cos 5A + \cos 7A \] Using the cosine addition formula: - For \(\cos A + \cos 7A\): \[ \cos A + \cos 7A = 2 \cos\left(\frac{A + 7A}{2}\right) \cos\left(\frac{7A - A}{2}\right) = 2 \cos(4A) \cos(3A) \] - For \(\cos 3A + \cos 5A\): \[ \cos 3A + \cos 5A = 2 \cos\left(\frac{3A + 5A}{2}\right) \cos\left(\frac{5A - 3A}{2}\right) = 2 \cos(4A) \cos(A) \] ### Step 5: Combine the Cosine Terms Combining these results: \[ \cos A + \cos 7A + \cos 3A + \cos 5A = 2 \cos(4A) \cos(3A) + 2 \cos(4A) \cos(A) \] Factoring out \(2 \cos(4A)\): \[ = 2 \cos(4A) (\cos(3A) + \cos(A)) \] ### Step 6: Form the Final Expression Now we can substitute back into our original expression: \[ \frac{2 \sin(4A) (\cos(3A) + \cos(A))}{2 \cos(4A) (\cos(3A) + \cos(A))} \] The \(2\) and \((\cos(3A) + \cos(A))\) terms cancel out (assuming \(\cos(3A) + \cos(A) \neq 0\)): \[ = \frac{\sin(4A)}{\cos(4A)} = \tan(4A) \] ### Final Answer Thus, the expression simplifies to: \[ \tan(4A) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.4|8 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.5|10 Videos
  • TRIGONOMETRY

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 11.2|18 Videos
  • TIME, SPEED AND DISTANCE

    ARIHANT SSC|Exercise SPEED TEST (TSD)|10 Videos
  • TRUE DISCOUNT AND BANKER'S DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|23 Videos

Similar Questions

Explore conceptually related problems

(sinA + sin3A) / (cosA + cos3A) = tanalpha, (cosA-cos2A) / (sinA + sin2A) = tanbeta, (sinA + sin3A + sin5A + sin7A) / (cosA + cos3A + cos5A + cos7A) = tan gamma , (cosA-cos5A-cos9A + cos13A) / (sinA-sin5A + sin9A-sin13A) = tandelta, then (a) alpha = 4beta (b) gamma = 2alpha (c) gamma = delta (d) none

(sin A+sin3A+sin5A+sin7A)/(cos A+cos3A+cos5A+cos7A)=tan4A

Prove that: (sin A+sin3A+sin5A+sin7A)/(cos A+cos3A+cos5A+cos7A)=tan4A

(sin A + sin5A + sin9A) / (cos A + cos5A + cos9A) =

Prove that: (sin2A sin3A-sin4A sin5A+sin3A sin6A)/(cos2A cos3A-cos4A cos5A+cos3A cos6A)=tan A tan4A

(sin3A+sin5A+sin7A+sin9A)/(cos3A+cos5A+cos7A+cos9A)

The fundamental period of (sin x+sin3x+sin5x+sin7x)/(cos x+cos3x+cos5x+cos7x) is (pi)/(k) then k=

(sin A sin2A + sin3A sin6A) / (sin A cos2A + sin3A cos6A) = tan5A

Prove that: (sin7A+sin5A+sin9A+sin3A)/(cos3A+cos5A+cos7A+cos9A)= tan6A

(sin5A-sin7A+sin8A-sin4A)/(cos4+cos7A-cos5A-cos8A)=cot6A