Home
Class 14
MATHS
If f(x)=x^(2)+2 then f^(-1)(x) is :...

If `f(x)=x^(2)+2` then `f^(-1)(x)` is :

A

`sqrt(x-2)`

B

`sqrt(x+2)`

C

`sqrtx+2`

D

`x+4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = x^2 + 2 \), we will follow these steps: ### Step 1: Set the function equal to \( y \) We start by letting: \[ y = f(x) = x^2 + 2 \] ### Step 2: Solve for \( x \) Next, we need to express \( x \) in terms of \( y \). Rearranging the equation gives: \[ y - 2 = x^2 \] Now, take the square root of both sides: \[ x = \sqrt{y - 2} \] Note that we only consider the positive square root because the function \( f(x) = x^2 + 2 \) is defined for \( x \geq 0 \) (assuming we are looking for the principal branch of the inverse). ### Step 3: Express the inverse function Now, we can express the inverse function \( f^{-1}(y) \): \[ f^{-1}(y) = \sqrt{y - 2} \] ### Step 4: Replace \( y \) with \( x \) To find \( f^{-1}(x) \), we replace \( y \) with \( x \): \[ f^{-1}(x) = \sqrt{x - 2} \] ### Final Answer Thus, the inverse function is: \[ f^{-1}(x) = \sqrt{x - 2} \] ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|84 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|48 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.2|30 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x)=x^2+2x+1 , then: f(x-1)-=

Let f(x)=2x|2x| then f^(-1)(x) equals

f(x)+f(1-x)=2, then f((1)/(2)) is

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

If f(x)=log((1+x)/(1-x)), then f(x) is (i) Even Function (ii) f(x_(1))-f(x_(2))=f(x_(1)+x_(2)) (iii) ((f(x_(1)))/(f(x_(2))))=f(x_(1)-x_(2)) (iv) Odd function

If f (x)=4x -x ^(2), then f (a+1) -f (a-1) =

If 2f(x^(2))+3f((1)/(x^(2)))=x^(2)-1, then f(x^(2)) is

(x^(2))+3f((1)/(x^(2)))=x^(2)-1, then f(x^(2)) is