Home
Class 14
MATHS
Let f:(-oo, 1]rarr(-oo, 1] such that f(x...

Let `f:(-oo, 1]rarr(-oo, 1]` such that `f(x)=x(2-x)`, then `f^(-1)(x)` is :

A

a. `1+sqrt(1-x)`

B

b. `1-sqrt(1-x)`

C

c. `sqrt(1-x)`

D

d. none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse function \( f^{-1}(x) \) for the function \( f(x) = x(2 - x) \), we will follow these steps: ### Step 1: Set up the equation We start with the function: \[ y = f(x) = x(2 - x) \] This can be rewritten as: \[ y = 2x - x^2 \] ### Step 2: Rearrange the equation Rearranging gives us: \[ x^2 - 2x + y = 0 \] This is a quadratic equation in terms of \( x \). ### Step 3: Apply the quadratic formula Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = -2, c = y \): \[ x = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot y}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{2 \pm \sqrt{4 - 4y}}{2} \] \[ x = \frac{2 \pm 2\sqrt{1 - y}}{2} \] \[ x = 1 \pm \sqrt{1 - y} \] ### Step 4: Determine the correct sign Since the function \( f(x) \) is defined from \( (-\infty, 1] \), we need to take the negative root to ensure that we stay within the range of the function: \[ x = 1 - \sqrt{1 - y} \] ### Step 5: Solve for \( f^{-1}(x) \) Now we can express the inverse function: \[ f^{-1}(x) = 1 - \sqrt{1 - x} \] ### Final Answer Thus, the inverse function is: \[ f^{-1}(x) = 1 - \sqrt{1 - x} \] ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|84 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|48 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.2|30 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

Let f:(-oo,1]rarr(-oo,1] such that f(x)=x(2-x). Then find f^(-1)(x)

If f:[2,oo)rarr(-oo,4], where f(x)=x(4-x) then find f^(-1)(x)

Let f:(-oo,-1)rarr R-{1} is defined as f(x)=(x)/(x+1) Find f^(-1)(x)

If f:[1,oo)rarr[1,oo) is defined as f(x)=3^(x(x-2)) then f^(-1)(x) is equal to

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

If the function, f:[1,oo]to [1,oo] is defined by f(x)=3^(x(x-1)) , then f^(-1)(x) is

Let f(0,oo) rarr (-oo,oo) be defined as f(x)=e^(x)+ln x and g=f^(-1) , then find the g'(e) .

Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))) .Then f^(-1)(x) is

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=|x| is