Home
Class 14
MATHS
If M(a, b)=a^(2)+b^(2)+ab,N(a, b)=a^(2)+...

If `M(a, b)=a^(2)+b^(2)+ab,N(a, b)=a^(2)+b^(2)-ab`. Find the value of `M(7, N(9, 4))`.

A

5197

B

3197

C

4197

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( M(7, N(9, 4)) \). We will do this step by step. ### Step 1: Calculate \( N(9, 4) \) The function \( N(a, b) \) is defined as: \[ N(a, b) = a^2 + b^2 - ab \] Substituting \( a = 9 \) and \( b = 4 \): \[ N(9, 4) = 9^2 + 4^2 - 9 \cdot 4 \] Calculating each term: - \( 9^2 = 81 \) - \( 4^2 = 16 \) - \( 9 \cdot 4 = 36 \) Now, substituting these values back into the equation: \[ N(9, 4) = 81 + 16 - 36 \] Calculating this step-by-step: \[ 81 + 16 = 97 \] \[ 97 - 36 = 61 \] Thus, we have: \[ N(9, 4) = 61 \] ### Step 2: Calculate \( M(7, N(9, 4)) \) Now that we have \( N(9, 4) = 61 \), we can find \( M(7, 61) \). The function \( M(a, b) \) is defined as: \[ M(a, b) = a^2 + b^2 + ab \] Substituting \( a = 7 \) and \( b = 61 \): \[ M(7, 61) = 7^2 + 61^2 + 7 \cdot 61 \] Calculating each term: - \( 7^2 = 49 \) - \( 61^2 = 3721 \) - \( 7 \cdot 61 = 427 \) Now, substituting these values back into the equation: \[ M(7, 61) = 49 + 3721 + 427 \] Calculating this step-by-step: \[ 49 + 3721 = 3770 \] \[ 3770 + 427 = 4197 \] Thus, we have: \[ M(7, 61) = 4197 \] ### Final Answer The value of \( M(7, N(9, 4)) \) is \( 4197 \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|48 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.3|17 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

If a^(4) + a^(2) b^(2) +b^(4)=8, a^(2) + b^(2) + ab= 4 find ab

a o+ b=(a+b)^(2)-ab a**b=(ab)^(2)-ab a"@"b=(a-b)^(2)-ab Find the value of (((1o+2)**3)"@" 20) :

a o+ b=(a+b)^(2)-ab a**b=(ab)^(2)-ab a"@"b=(a-b)^(2)-ab Find the value of (5o+6)-(6"@"3)+(2**4)

If a * b= a^(2) + ab + b^(2) , then find the value of 2 * 3?

If a^(4) + a^(2)b^(2) + b^(4) = 12, a^(2) + ab+ b^(2)=4 , find ab

If a^(2)+b^(2)=234 and ab=108 , find the value of (a+b)/(a-b)

If a^(2)+b^(2)=117 and ab=54, then find the value of (a+b)/(a-b)

ARIHANT SSC-FUNCTIONS AND GRAPH-EXERCISE(LEVEL 1)
  1. For every a, b in N a" @ "b=a^(2)" when "(a+b)" is even" =a^(2)-b^...

    Text Solution

    |

  2. For every a, b in N a" @ "b=a^(2)" when "(a+b)" is even" =a^(2)-b^...

    Text Solution

    |

  3. If M(a, b)=a^(2)+b^(2)+ab,N(a, b)=a^(2)+b^(2)-ab. Find the value of M(...

    Text Solution

    |

  4. If f(x)=x^(3)-x^(2), then f(x+1) is :

    Text Solution

    |

  5. Let f={(1,1),(2,3),(0,−1),(−1,−3)} be a function from Z to Z defined b...

    Text Solution

    |

  6. The sum of five number is 215. The average of the first two number is ...

    Text Solution

    |

  7. Average of 17 observations is 28. The average of first 8 observations ...

    Text Solution

    |

  8. x"@"y=(x+y)^(2) x#y=(x-y)^(2) Find the value of (20"@"4)#35:

    Text Solution

    |

  9. x"@"y=(x+y)^(2) x#y=(x-y)^(2) Find the value of 516#(14"@"13)):

    Text Solution

    |

  10. x"@"y=(x+y)^(2) x#y=(x-y)^(2) Find the value of (9#7)"@"(21#5):

    Text Solution

    |

  11. x"@"y=(x+y)^(2) x#y=(x-y)^(2) (2" @ "2)+(3#3)-(4"@"4)+(5#5) is equ...

    Text Solution

    |

  12. The average marks in english subject of a class of 24 students is 56. ...

    Text Solution

    |

  13. The sum of four consecutive even number is 60. What is the sum of the ...

    Text Solution

    |

  14. a and b are any number and x and y are any non negative integers. f(...

    Text Solution

    |

  15. If [x] is the greatest integer less than or equal to x, what is the va...

    Text Solution

    |

  16. a and b are any number and x and y are any non negative integers. f(...

    Text Solution

    |

  17. x#y={{:(x+2y,if,|x+y|" is even"),(2x" @2 "y,if,|x+y|" is odd"):} x"@...

    Text Solution

    |

  18. x#y={{:(x+2y,if,|x+y|" is even"),(2x" @2 "y,if,|x+y|" is odd"):} x"@...

    Text Solution

    |

  19. x#y={{:(x+2y,if,|x+y|" is even"),(2x" @2 "y,if,|x+y|" is odd"):} x"@...

    Text Solution

    |

  20. a#b=a^(2)+b-1 a$b=a^(2)+b^(2)+1 "Max (a,b)"=|a+b| "Min (a, b)"=|...

    Text Solution

    |