Home
Class 14
MATHS
a#b=(-1)^(ab)(a^(b)+b^(a)) f(x)=x^(2)-...

`a#b=(-1)^(ab)(a^(b)+b^(a))`
`f(x)=x^(2)-2x if x ge 0`
`=0if x lt0`
`g(x)=2x, if x ge0`
`=1, if x lt0`
Find the value of `f(g(2#3))+g(f(1#2)):`

A

9401

B

1049

C

1094

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( f(g(2 \# 3)) + g(f(1 \# 2)) \). We will break this down step by step. ### Step 1: Calculate \( 2 \# 3 \) The operation \( a \# b \) is defined as: \[ a \# b = (-1)^{ab} (a^b + b^a) \] Substituting \( a = 2 \) and \( b = 3 \): \[ 2 \# 3 = (-1)^{2 \cdot 3} (2^3 + 3^2) \] Calculating the exponent: \[ (-1)^{6} = 1 \quad (\text{since 6 is even}) \] Now calculate \( 2^3 \) and \( 3^2 \): \[ 2^3 = 8 \quad \text{and} \quad 3^2 = 9 \] Adding these results together: \[ 2 \# 3 = 1 \cdot (8 + 9) = 1 \cdot 17 = 17 \] ### Step 2: Calculate \( g(2 \# 3) = g(17) \) The function \( g(x) \) is defined as: \[ g(x) = \begin{cases} 2x & \text{if } x \geq 0 \\ 1 & \text{if } x < 0 \end{cases} \] Since \( 17 \geq 0 \): \[ g(17) = 2 \cdot 17 = 34 \] ### Step 3: Calculate \( f(g(2 \# 3)) = f(34) \) The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} x^2 - 2x & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} \] Since \( 34 \geq 0 \): \[ f(34) = 34^2 - 2 \cdot 34 \] Calculating \( 34^2 \): \[ 34^2 = 1156 \] Calculating \( 2 \cdot 34 \): \[ 2 \cdot 34 = 68 \] Now, substituting back: \[ f(34) = 1156 - 68 = 1088 \] ### Step 4: Calculate \( 1 \# 2 \) Using the same operation definition: \[ 1 \# 2 = (-1)^{1 \cdot 2} (1^2 + 2^1) \] Calculating the exponent: \[ (-1)^{2} = 1 \quad (\text{since 2 is even}) \] Calculating \( 1^2 \) and \( 2^1 \): \[ 1^2 = 1 \quad \text{and} \quad 2^1 = 2 \] Adding these results together: \[ 1 \# 2 = 1 \cdot (1 + 2) = 1 \cdot 3 = 3 \] ### Step 5: Calculate \( f(1 \# 2) = f(3) \) Since \( 3 \geq 0 \): \[ f(3) = 3^2 - 2 \cdot 3 \] Calculating \( 3^2 \): \[ 3^2 = 9 \] Calculating \( 2 \cdot 3 \): \[ 2 \cdot 3 = 6 \] Now, substituting back: \[ f(3) = 9 - 6 = 3 \] ### Step 6: Calculate \( g(f(1 \# 2)) = g(3) \) Since \( 3 \geq 0 \): \[ g(3) = 2 \cdot 3 = 6 \] ### Step 7: Combine the results Now we need to find: \[ f(g(2 \# 3)) + g(f(1 \# 2)) = f(34) + g(3) = 1088 + 6 = 1094 \] ### Final Answer The final answer is: \[ \boxed{1094} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|48 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.3|17 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

a#b=(-1)^(ab)(a^(b)+b^(a)) f(x)=x^(2)-2x if x ge 0 =0if x lt0 g(x)=2x, if x ge0 =1, if x lt0 Find the value of f(2#3)#g(3#4) :

If f(x)={:{(x", for " x ge 0),(x^(2)", for " x lt 0):} , then f is

If f(x)={(2x", for " x lt 0),(2x+1", for " x ge 0):} , then

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

Let f(x)=x^(3)+x be function and g(x)={(f(|x|)",", x ge 0),(f(-|x|)",",x lt 0):} , then

If f(x)={{:(2+x",", x ge0),(4-x",", x lt 0):}, then f (f(x)) is given by :

If f(x){:(=4(3^(x))", "," if "x lt0),(=x+2k+2," if " x ge 0):} is continuous at x = 0 , then k = ….

If f(x)={(x^(2)",","for "x ge0),(x",","for "x lt 0):} , then fof(x) is given by

Let f(x)={2x-1,-3 le x lt 1,3x^(^^)2-2, x ge 1 and g(x)=4x+7-5 le 0,5x^(^^)2-x+7x>=0 then value of int_(-)(-2)^(^^)2gof(x) equals

ARIHANT SSC-FUNCTIONS AND GRAPH-EXERCISE(LEVEL 1)
  1. a**b#c=(ab)^(c): a#b**c=a^(b).c, then find the value of 3#4**5+3**4#...

    Text Solution

    |

  2. a#b=(-1)^(ab)(a^(b)+b^(a)) f(x)=x^(2)-2x if x ge 0 =0if x lt0 g(...

    Text Solution

    |

  3. a#b=(-1)^(ab)(a^(b)+b^(a)) f(x)=x^(2)-2x if x ge 0 =0if x lt0 g(...

    Text Solution

    |

  4. a o+ b=(a+b)^(2)-ab a**b=(ab)^(2)-ab a"@"b=(a-b)^(2)-ab Find the...

    Text Solution

    |

  5. a o+ b=(a+b)^(2)-ab a**b=(ab)^(2)-ab a"@"b=(a-b)^(2)-ab Find the...

    Text Solution

    |

  6. If mltn then mDn=mCn else mDn=nCm If m=n then mEn=mn else mEn=mCn wh...

    Text Solution

    |

  7. If mltn then mDn=mCn else mDn=nCm If m=n then mEn=mn else mEn=mCn wh...

    Text Solution

    |

  8. Devic Mathematics are as follows : +rarr" multiplication" - rarr" ...

    Text Solution

    |

  9. Devic Mathematics are as follows : +rarr" multiplication" - rarr" ...

    Text Solution

    |

  10. Devic Mathematics are as follows : +rarr" multiplication" - rarr" ...

    Text Solution

    |

  11. Devic Mathematics are as follows : +rarr" multiplication" - rarr" ...

    Text Solution

    |

  12. Devic Mathematics are as follows : +rarr" multiplication" - rarr" ...

    Text Solution

    |

  13. PDeltaQ=P+Q, if PQ lt0 PDeltaQ=P-Q, if PQ gt0 [(2Delta3)Delta(-2De...

    Text Solution

    |

  14. PDeltaQ=P+Q, if PQ lt0 PDeltaQ=P-Q, if PQ gt0 If (a Deltab)Delta(a...

    Text Solution

    |

  15. If f(x)=x^(3)+3x^(2)+3x, then f(x+1) is equal to

    Text Solution

    |

  16. x"@"y=xy-1, if x gty =0," otherwise" and x#y=(x+y)/(x-y) if x ge0,...

    Text Solution

    |

  17. The following functions are defined for any two distinct, non zero int...

    Text Solution

    |

  18. The following functions are defined for any two distinct, non zero int...

    Text Solution

    |

  19. If (p)rarr the least possible integer greater than or equal to p. g ...

    Text Solution

    |

  20. If (p)rarr the least possible integer greater than or equal to p. g ...

    Text Solution

    |