Home
Class 14
MATHS
a"@"b=|a-b| a**b=ab a#b=|a^(2)-b^(2)...

`a"@"b=|a-b|`
`a**b=ab`
`a#b=|a^(2)-b^(2)|`
`aDeltab=a^(2)+b^(2)`
where `a, b in R and a neb` and the real algebraic operations are unchanged.
The value of the expression `[(a#b)div(a"@"b)]^(2)-2(a**b):`

A

`a#b`

B

`aDeltab`

C

`(a#b)(a"@"b)`

D

can't be detetmined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \([(a \# b) \div (a @ b)]^2 - 2(a ** b)\), we will follow these steps: ### Step 1: Identify the operations We have the following operations defined: - \(a @ b = |a - b|\) - \(a ** b = ab\) - \(a \# b = |a^2 - b^2|\) - \(a \Delta b = a^2 + b^2\) ### Step 2: Calculate \(a \# b\) Using the definition of the operation \(\#\): \[ a \# b = |a^2 - b^2| \] This can be factored as: \[ |a^2 - b^2| = |(a - b)(a + b)| \] ### Step 3: Calculate \(a @ b\) Using the definition of the operation \(@\): \[ a @ b = |a - b| \] ### Step 4: Calculate \((a \# b) \div (a @ b)\) Now we can substitute the results from Steps 2 and 3 into the expression: \[ \frac{a \# b}{a @ b} = \frac{|(a - b)(a + b)|}{|a - b|} \] Since \(a \neq b\), we can simplify this: \[ = |a + b| \] ### Step 5: Square the result Now we square the result from Step 4: \[ \left(\frac{a \# b}{a @ b}\right)^2 = (|a + b|)^2 = (a + b)^2 \] ### Step 6: Calculate \(2(a ** b)\) Using the definition of the operation \(**\): \[ 2(a ** b) = 2(ab) \] ### Step 7: Combine the results Now we substitute back into the main expression: \[ (a + b)^2 - 2(ab) \] ### Step 8: Recognize the identity Notice that \((a + b)^2 - 2ab\) is the expansion of: \[ (a - b)^2 \] ### Final Result Thus, the value of the expression is: \[ (a - b)^2 \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|48 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.3|17 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

If a^(2)+ab+b^(2) = b^(2) +bc +c^(2) where a ne b ne c then find the value of a+b+c .

The simplified value of the expression (a+b-c)^2+2(a+b-c)(a-b+c)+(a-b+c)^2 is

If a = 2 and b = 5, the value of the expression 2a-[3a+{4b-(2a-b)+5a}-7b] is :

If 4(a+2)^(2)-9a+2(2a^(2)-1)=4(b+2)^(2)-9b+2(2b^(2)-1)=15 where a,b in R and a>b then find the value of 8(a-b)

If a * b = a^(2) + b^(2) and a.b = a^(2) - b^(2) , then the value of (5 * 2).25 is

ARIHANT SSC-FUNCTIONS AND GRAPH-EXERCISE(LEVEL 1)
  1. a"@"b=(a+b)(ab+b) a#b=(a-b)(ab-b) aDeltab=(a"@"b)-(a#b) Find the...

    Text Solution

    |

  2. a"@"b=|a-b| a**b=ab a#b=|a^(2)-b^(2)| aDeltab=a^(2)+b^(2) wher...

    Text Solution

    |

  3. a"@"b=|a-b| a**b=ab a#b=|a^(2)-b^(2)| aDeltab=a^(2)+b^(2) wher...

    Text Solution

    |

  4. A function f(x)=log(g(x)), where g(x) is any function of x. For what...

    Text Solution

    |

  5. A function f(x)=log(g(x)), where g(x) is any function of x. For what...

    Text Solution

    |

  6. A function f(x)=log(g(x)), where g(x) is any function of x. If g(x)=...

    Text Solution

    |

  7. If f(x)=2x+3 and g(x)=9x+6, then find g[f(x)]-f[g(x)]

    Text Solution

    |

  8. If f(x)=x^(2)+2x+2,x ge-1 =x^(3)+3x+1, x lt-1 then find the value ...

    Text Solution

    |

  9. [m] is defined as the greatest integer less than m [m] is defined as...

    Text Solution

    |

  10. [m] is defined as the greater integer less than m. {m} is defined as...

    Text Solution

    |

  11. [m] is defined as the greatest integer less than m [m] is defined as...

    Text Solution

    |

  12. A decimal number 'm' (say) can be expressed as m=1+D where lrarr i...

    Text Solution

    |

  13. A decimal number 'm' (say) can be expressed as m=1+D where lrarr i...

    Text Solution

    |

  14. A decimal number 'm' (say) can be expressed as m=1+D where lrarr i...

    Text Solution

    |

  15. f(x)=(1)/(x),g(x)=(x+(1)/(x)), then which of the following is true?

    Text Solution

    |

  16. If f(x)=2x^(2)+7x-9 and g(x)=2x+3, then find the vlaue of g(g(x)) at x...

    Text Solution

    |

  17. Find f(f(f(f(f(2)))))) if f(x)=(x+1)/(x-1),x ne 1

    Text Solution

    |

  18. f(x)=1-h(x), g(x)=1-k(x), h(x)=f(x)+1 f(x)=g(x)+1, k(x)=j(x)+1 Fin...

    Text Solution

    |

  19. f(x) = 1 - h(x), g(x) = 1 - k(x), h(x) = f(x) + 1 f(x) = g(x) + 1, k...

    Text Solution

    |

  20. If f(x) and g(x) are odd functions of x, then which of the following i...

    Text Solution

    |