Home
Class 14
MATHS
A function is defined as follows : f(a...

A function is defined as follows :
`f(a_(1), a_(2), a_(3)...a_(n))=a_(1)2^(n-1)+a_(2)2^(n-2)+a_(3)2^(n-3)+...a_(n)2^(0)`
The above function is repreated until the value of function reduces to a single digit number.
What is the value of `f[f(888222)+f(113113)]:`

A

6

B

7

C

8

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow the steps outlined in the video transcript to evaluate the function \( f \) and reduce the results to a single digit. ### Step 1: Calculate \( f(888222) \) 1. **Identify \( n \)**: The number \( 888222 \) has 6 digits, so \( n = 6 \). 2. **Apply the function**: \[ f(888222) = 8 \cdot 2^{5} + 8 \cdot 2^{4} + 8 \cdot 2^{3} + 2 \cdot 2^{2} + 2 \cdot 2^{1} + 2 \cdot 2^{0} \] 3. **Calculate each term**: - \( 8 \cdot 2^{5} = 8 \cdot 32 = 256 \) - \( 8 \cdot 2^{4} = 8 \cdot 16 = 128 \) - \( 8 \cdot 2^{3} = 8 \cdot 8 = 64 \) - \( 2 \cdot 2^{2} = 2 \cdot 4 = 8 \) - \( 2 \cdot 2^{1} = 2 \cdot 2 = 4 \) - \( 2 \cdot 2^{0} = 2 \cdot 1 = 2 \) 4. **Sum the results**: \[ 256 + 128 + 64 + 8 + 4 + 2 = 462 \] ### Step 2: Reduce \( 462 \) to a single digit 1. **Identify \( n \)**: The number \( 462 \) has 3 digits, so \( n = 3 \). 2. **Apply the function**: \[ f(462) = 4 \cdot 2^{2} + 6 \cdot 2^{1} + 2 \cdot 2^{0} \] 3. **Calculate each term**: - \( 4 \cdot 2^{2} = 4 \cdot 4 = 16 \) - \( 6 \cdot 2^{1} = 6 \cdot 2 = 12 \) - \( 2 \cdot 2^{0} = 2 \cdot 1 = 2 \) 4. **Sum the results**: \[ 16 + 12 + 2 = 30 \] ### Step 3: Reduce \( 30 \) to a single digit 1. **Identify \( n \)**: The number \( 30 \) has 2 digits, so \( n = 2 \). 2. **Apply the function**: \[ f(30) = 3 \cdot 2^{1} + 0 \cdot 2^{0} \] 3. **Calculate each term**: - \( 3 \cdot 2^{1} = 3 \cdot 2 = 6 \) - \( 0 \cdot 2^{0} = 0 \) 4. **Sum the results**: \[ 6 + 0 = 6 \] ### Step 4: Calculate \( f(113113) \) 1. **Identify \( n \)**: The number \( 113113 \) has 6 digits, so \( n = 6 \). 2. **Apply the function**: \[ f(113113) = 1 \cdot 2^{5} + 1 \cdot 2^{4} + 3 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 3 \cdot 2^{0} \] 3. **Calculate each term**: - \( 1 \cdot 2^{5} = 32 \) - \( 1 \cdot 2^{4} = 16 \) - \( 3 \cdot 2^{3} = 24 \) - \( 1 \cdot 2^{2} = 4 \) - \( 1 \cdot 2^{1} = 2 \) - \( 3 \cdot 2^{0} = 3 \) 4. **Sum the results**: \[ 32 + 16 + 24 + 4 + 2 + 3 = 81 \] ### Step 5: Reduce \( 81 \) to a single digit 1. **Identify \( n \)**: The number \( 81 \) has 2 digits, so \( n = 2 \). 2. **Apply the function**: \[ f(81) = 8 \cdot 2^{1} + 1 \cdot 2^{0} \] 3. **Calculate each term**: - \( 8 \cdot 2^{1} = 16 \) - \( 1 \cdot 2^{0} = 1 \) 4. **Sum the results**: \[ 16 + 1 = 17 \] ### Step 6: Reduce \( 17 \) to a single digit 1. **Identify \( n \)**: The number \( 17 \) has 2 digits, so \( n = 2 \). 2. **Apply the function**: \[ f(17) = 1 \cdot 2^{1} + 7 \cdot 2^{0} \] 3. **Calculate each term**: - \( 1 \cdot 2^{1} = 2 \) - \( 7 \cdot 2^{0} = 7 \) 4. **Sum the results**: \[ 2 + 7 = 9 \] ### Step 7: Final Calculation Now we have: - \( f(888222) = 6 \) - \( f(113113) = 9 \) Finally, we need to calculate: \[ f[f(888222) + f(113113)] = f[6 + 9] = f[15] \] ### Step 8: Calculate \( f(15) \) 1. **Identify \( n \)**: The number \( 15 \) has 2 digits, so \( n = 2 \). 2. **Apply the function**: \[ f(15) = 1 \cdot 2^{1} + 5 \cdot 2^{0} \] 3. **Calculate each term**: - \( 1 \cdot 2^{1} = 2 \) - \( 5 \cdot 2^{0} = 5 \) 4. **Sum the results**: \[ 2 + 5 = 7 \] ### Final Answer The value of \( f[f(888222) + f(113113)] \) is \( \boxed{7} \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|48 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

A function is defined as follows : f(a_(1), a_(2), a_(3)...a_(n))=a_(1)2^(n-1)+a_(2)2^(n-2)+a_(3)2^(n-3)+...a_(n)2^(0) The above function is repreated until the value of function reduces to a single digit number. f(128) equals :

A function is defined as follows : f(a_(1), a_(2), a_(3)...a_(n))=a_(1)2^(n-1)+a_(2)2^(n-2)+a_(3)2^(n-3)+...a_(n)2^(0) The above function is repreated until the value of function reduces to a single digit number. f(9235)+f(9450) equals:

a_(0)f^(n)(x)+a_(1)f^(n-1)(x)*g(x)+a_(2)f^(n-2)g^(2)(x)+......+a_(n)g^(n)(x)>=0

If quad 1,a_(1)=3 and a_(n)^(2)-a_(n-1)*a_(n+1)=(-1)^(n) Find a_(3).

clf a_(1),a_(2),a_(3),...,a_(n)in R then (x-a_(1))^(2)+(x-a_(2))^(2)+....+(x-a_(n))^(2) assumes its least value at x=

. If a_(1),a_(2),a_(3),...,a_(2n+1) are in AP then (a_(2n+1)+a_(1))+(a_(2n)+a_(2))+...+(a_(n+2)+a_(n)) is equal to

If a_(1),a_(2),a_(3),.....a_(n) are in H.P.and a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+......a_(n-1)a_(n)=ka_(1)a_(n) then k is equal to

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_(n)=a_(n-1)+a_(n-2),n>2 Find (a_(n+1))/(a_(n)),f or n=5

If a_(1),a_(2),a_(3),dots,a_(n+1) are in A.P.then (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))...+(1)/(a_(n)a_(n+1)) is

If a_(1),a_(2),...a_(n) are in H.P then the expression a_(1)a_(2)+a_(2)a_(3)+...+a_(n-1)a_(n) is equal to

ARIHANT SSC-FUNCTIONS AND GRAPH-Final Round
  1. If p,q,r,s be the distinct integers such that : f(p, q, r, s)=" maxi...

    Text Solution

    |

  2. If p,q,r,s be the distinct integers such that br> f(p, q, r, s)=" maxi...

    Text Solution

    |

  3. If p,q,r,s be the distinct integers such that : f(p, q, r, s)=" maxi...

    Text Solution

    |

  4. If p,q,r,s be the distinct integers such that : f(p, q, r, s)=" maxi...

    Text Solution

    |

  5. If p,q,r,s be the distinct integers such that : f(p, q, r, s)=" maxi...

    Text Solution

    |

  6. Following questions are based on the given information for the followi...

    Text Solution

    |

  7. Following questions are based on the given information for the followi...

    Text Solution

    |

  8. Following questions are based on the given information for the followi...

    Text Solution

    |

  9. Following questions are based on the given information for the followi...

    Text Solution

    |

  10. Following questions are based on the given information for the followi...

    Text Solution

    |

  11. Following questions are based on the given information for the followi...

    Text Solution

    |

  12. Following questions are based on the given information for the followi...

    Text Solution

    |

  13. A function f(z(1), z(2), z(3),.....z(n))=f(z(1), z(2))+f(z(2), z(3),.....

    Text Solution

    |

  14. A function f(z(1), z(2), z(3),.....z(n))=f(z(1), z(2))+f(z(2), z(3),.....

    Text Solution

    |

  15. A function f(z(1), z(2), z(3),.....z(n))=f(z(1), z(2))+f(z(2), z(3),.....

    Text Solution

    |

  16. A function f(z(1), z(2), z(3),.....z(n))=f(z(1), z(2))+f(z(2), z(3),.....

    Text Solution

    |

  17. A function f(z(1), z(2), z(3),.....z(n))=f(z(1), z(2))+f(z(2), z(3),.....

    Text Solution

    |

  18. A function is defined as follows : f(a(1), a(2), a(3)...a(n))=a(1)2^...

    Text Solution

    |

  19. A function is defined as follows : f(a(1), a(2), a(3)...a(n))=a(1)2^...

    Text Solution

    |

  20. A function is defined as follows : f(a(1), a(2), a(3)...a(n))=a(1)2^...

    Text Solution

    |