Home
Class 14
MATHS
A function is defined as follows : f(a...

A function is defined as follows :
`f(a_(1), a_(2), a_(3)...a_(n))=a_(1)2^(n-1)+a_(2)2^(n-2)+a_(3)2^(n-3)+...a_(n)2^(0)`
The above function is repreated until the value of function reduces to a single digit number.
`f(9235)+f(9450)` equals:

A

5

B

3

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(a_1, a_2, a_3, \ldots, a_n) \) for the numbers 9235 and 9450, and then sum the results. The function is defined as: \[ f(a_1, a_2, a_3, \ldots, a_n) = a_1 \cdot 2^{n-1} + a_2 \cdot 2^{n-2} + a_3 \cdot 2^{n-3} + \ldots + a_n \cdot 2^{0} \] where \( n \) is the number of digits in the number. ### Step 1: Calculate \( f(9235) \) 1. Identify the digits: - \( a_1 = 9 \) - \( a_2 = 2 \) - \( a_3 = 3 \) - \( a_4 = 5 \) - \( n = 4 \) (since there are 4 digits) 2. Apply the function: \[ f(9235) = 9 \cdot 2^{4-1} + 2 \cdot 2^{4-2} + 3 \cdot 2^{4-3} + 5 \cdot 2^{4-4} \] \[ = 9 \cdot 2^3 + 2 \cdot 2^2 + 3 \cdot 2^1 + 5 \cdot 2^0 \] \[ = 9 \cdot 8 + 2 \cdot 4 + 3 \cdot 2 + 5 \cdot 1 \] \[ = 72 + 8 + 6 + 5 = 91 \] ### Step 2: Reduce \( 91 \) to a single digit 1. Calculate \( f(91) \): - \( a_1 = 9 \) - \( a_2 = 1 \) - \( n = 2 \) 2. Apply the function: \[ f(91) = 9 \cdot 2^{2-1} + 1 \cdot 2^{2-2} \] \[ = 9 \cdot 2^1 + 1 \cdot 2^0 \] \[ = 9 \cdot 2 + 1 \cdot 1 \] \[ = 18 + 1 = 19 \] 3. Calculate \( f(19) \): - \( a_1 = 1 \) - \( a_2 = 9 \) - \( n = 2 \) 4. Apply the function: \[ f(19) = 1 \cdot 2^{2-1} + 9 \cdot 2^{2-2} \] \[ = 1 \cdot 2 + 9 \cdot 1 \] \[ = 2 + 9 = 11 \] 5. Calculate \( f(11) \): - \( a_1 = 1 \) - \( a_2 = 1 \) - \( n = 2 \) 6. Apply the function: \[ f(11) = 1 \cdot 2^{2-1} + 1 \cdot 2^{2-2} \] \[ = 1 \cdot 2 + 1 \cdot 1 \] \[ = 2 + 1 = 3 \] So, \( f(9235) = 3 \). ### Step 3: Calculate \( f(9450) \) 1. Identify the digits: - \( a_1 = 9 \) - \( a_2 = 4 \) - \( a_3 = 5 \) - \( a_4 = 0 \) - \( n = 4 \) 2. Apply the function: \[ f(9450) = 9 \cdot 2^{4-1} + 4 \cdot 2^{4-2} + 5 \cdot 2^{4-3} + 0 \cdot 2^{4-4} \] \[ = 9 \cdot 8 + 4 \cdot 4 + 5 \cdot 2 + 0 \cdot 1 \] \[ = 72 + 16 + 10 + 0 = 98 \] ### Step 4: Reduce \( 98 \) to a single digit 1. Calculate \( f(98) \): - \( a_1 = 9 \) - \( a_2 = 8 \) - \( n = 2 \) 2. Apply the function: \[ f(98) = 9 \cdot 2^{2-1} + 8 \cdot 2^{2-2} \] \[ = 9 \cdot 2 + 8 \cdot 1 \] \[ = 18 + 8 = 26 \] 3. Calculate \( f(26) \): - \( a_1 = 2 \) - \( a_2 = 6 \) - \( n = 2 \) 4. Apply the function: \[ f(26) = 2 \cdot 2^{2-1} + 6 \cdot 2^{2-2} \] \[ = 2 \cdot 2 + 6 \cdot 1 \] \[ = 4 + 6 = 10 \] 5. Calculate \( f(10) \): - \( a_1 = 1 \) - \( a_2 = 0 \) - \( n = 2 \) 6. Apply the function: \[ f(10) = 1 \cdot 2^{2-1} + 0 \cdot 2^{2-2} \] \[ = 1 \cdot 2 + 0 \cdot 1 \] \[ = 2 + 0 = 2 \] So, \( f(9450) = 2 \). ### Step 5: Final Calculation Now we sum the results: \[ f(9235) + f(9450) = 3 + 2 = 5 \] ### Final Answer: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|48 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

A function is defined as follows : f(a_(1), a_(2), a_(3)...a_(n))=a_(1)2^(n-1)+a_(2)2^(n-2)+a_(3)2^(n-3)+...a_(n)2^(0) The above function is repreated until the value of function reduces to a single digit number. f(128) equals :

A function is defined as follows : f(a_(1), a_(2), a_(3)...a_(n))=a_(1)2^(n-1)+a_(2)2^(n-2)+a_(3)2^(n-3)+...a_(n)2^(0) The above function is repreated until the value of function reduces to a single digit number. What is the value of f[f(888222)+f(113113)]:

a_(0)f^(n)(x)+a_(1)f^(n-1)(x)*g(x)+a_(2)f^(n-2)g^(2)(x)+......+a_(n)g^(n)(x)>=0

If quad 1,a_(1)=3 and a_(n)^(2)-a_(n-1)*a_(n+1)=(-1)^(n) Find a_(3).

. If a_(1),a_(2),a_(3),...,a_(2n+1) are in AP then (a_(2n+1)+a_(1))+(a_(2n)+a_(2))+...+(a_(n+2)+a_(n)) is equal to

If a_(1),a_(2),a_(3),.....a_(n) are in H.P.and a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+......a_(n-1)a_(n)=ka_(1)a_(n) then k is equal to

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_(n)=a_(n-1)+a_(n-2),n>2 Find (a_(n+1))/(a_(n)),f or n=5

If a_(1),a_(2),a_(3),dots,a_(n+1) are in A.P.then (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))...+(1)/(a_(n)a_(n+1)) is

If a_(1),a_(2),...a_(n) are in H.P then the expression a_(1)a_(2)+a_(2)a_(3)+...+a_(n-1)a_(n) is equal to

ARIHANT SSC-FUNCTIONS AND GRAPH-Final Round
  1. If p,q,r,s be the distinct integers such that : f(p, q, r, s)=" maxi...

    Text Solution

    |

  2. If p,q,r,s be the distinct integers such that br> f(p, q, r, s)=" maxi...

    Text Solution

    |

  3. If p,q,r,s be the distinct integers such that : f(p, q, r, s)=" maxi...

    Text Solution

    |

  4. If p,q,r,s be the distinct integers such that : f(p, q, r, s)=" maxi...

    Text Solution

    |

  5. If p,q,r,s be the distinct integers such that : f(p, q, r, s)=" maxi...

    Text Solution

    |

  6. Following questions are based on the given information for the followi...

    Text Solution

    |

  7. Following questions are based on the given information for the followi...

    Text Solution

    |

  8. Following questions are based on the given information for the followi...

    Text Solution

    |

  9. Following questions are based on the given information for the followi...

    Text Solution

    |

  10. Following questions are based on the given information for the followi...

    Text Solution

    |

  11. Following questions are based on the given information for the followi...

    Text Solution

    |

  12. Following questions are based on the given information for the followi...

    Text Solution

    |

  13. A function f(z(1), z(2), z(3),.....z(n))=f(z(1), z(2))+f(z(2), z(3),.....

    Text Solution

    |

  14. A function f(z(1), z(2), z(3),.....z(n))=f(z(1), z(2))+f(z(2), z(3),.....

    Text Solution

    |

  15. A function f(z(1), z(2), z(3),.....z(n))=f(z(1), z(2))+f(z(2), z(3),.....

    Text Solution

    |

  16. A function f(z(1), z(2), z(3),.....z(n))=f(z(1), z(2))+f(z(2), z(3),.....

    Text Solution

    |

  17. A function f(z(1), z(2), z(3),.....z(n))=f(z(1), z(2))+f(z(2), z(3),.....

    Text Solution

    |

  18. A function is defined as follows : f(a(1), a(2), a(3)...a(n))=a(1)2^...

    Text Solution

    |

  19. A function is defined as follows : f(a(1), a(2), a(3)...a(n))=a(1)2^...

    Text Solution

    |

  20. A function is defined as follows : f(a(1), a(2), a(3)...a(n))=a(1)2^...

    Text Solution

    |