Home
Class 12
MATHS
If A=[[0,1] , [-1,0]]=(alphaI+betaA)^2 t...

If `A=[[0,1] , [-1,0]]=(alphaI+betaA)^2` then `alpha` and `beta` =

Text Solution

Verified by Experts

The correct Answer is:
`beta =+-(1)/(sqrt(2)),+-(1)/(sqrt(2)) ;alpha =+-(1)/(sqrt(2)),+-(1)/(sqrt(2))`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-II)|13 Videos
  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (OBJECTIVE) (Level-I)|49 Videos
  • MATRICES

    FIITJEE|Exercise SOLVED PROBLEM|32 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • PARABOLA

    FIITJEE|Exercise NUMERICAL BASED|5 Videos

Similar Questions

Explore conceptually related problems

A=[(1,2),(-4,1)] , A^-1=alphaI+betaA then find the value of alpha+beta

If the matrix A=[[1,0,0] , [0,2,0], [3,0,-1]] satisfies the equation A^(20)+alpha A^(19)+beta A = [[1,0,0] , [0,4,0] , [0,0,1]] for some real numbers alpha and beta then beta-alpha=

A=[(1,0,0),(0,alpha,beta),(0,beta,alpha)] and abs(2A)^3=2^21 then find alpha (alpha, beta inI^+)

If alpha,beta, are roots of the equation x^(2)+sqrt(x)alpha+beta=0,beta beta then values of alpha and beta are 1. alpha=1 and beta=12 .alpha=1 and beta=-2 3.alpha=2 and beta=1alpha=2 and beta=-2

Let A=[(0,2),(0,0)]and (A+1)^100 -100A=[(alpha,beta),(gamma,delta)], then alpha+beta+gamma+delta=...

M=[{:(sin^(4)theta,-1-sin^(2)theta),(1+cos^(2)theta,cos^(4)theta):}]=alphaI+betaM^(-1) Where alpha=alpha(theta) and beta=beta(theta) ar real numbers and I is an identity matric of 2xx2 if alpha^(**)= min of set {alpha(theta):thetain[0.2pi)} and beta^(**)= min of set {beta(theta):thetain[0.2pi)} Then value of alpha^(**)+beta^(**) is

If : sin (alpha + beta)=1 and sin (alpha-beta)=(1)/(2), "then" : tan (alpha+2beta)*tan(2alpha+beta)= A)-1 B)0 C)1 D)2

sin(alpha+beta)=1 and sin(alpha-beta)=(1)/(2)quad 0<=alpha,beta,<=(pi)/(2), then find tan(alpha+2 beta) and tan(2 alpha+beta)

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) where alpha,beta in[0,(pi)/(2)], then tan(alpha+2 beta)tan(2 alpha+beta) is equal to