Home
Class 12
MATHS
Show that the most general orthogonal ma...

Show that the most general orthogonal matrix or order two is of the form
` [{:( cos theta , sin theta ),( +-sin theta , +-cos theta ):}]`

Text Solution

Verified by Experts

The correct Answer is:
`|A|^(n-2) A `
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-II)|13 Videos
  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (OBJECTIVE) (Level-I)|49 Videos
  • MATRICES

    FIITJEE|Exercise SOLVED PROBLEM|32 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • PARABOLA

    FIITJEE|Exercise NUMERICAL BASED|5 Videos

Similar Questions

Explore conceptually related problems

(i) |(cos theta,-sin theta),(sin theta,cos theta)|

Inverse of the matrix [{:(cos 2 theta, -sin 2 theta),(sin 2 theta, cos 2 theta):}] is

(1 + sin theta-cos theta) / (1 + sin theta + cos theta)

" (1) "|[cos theta,-sin theta],[sin theta,cos theta]|

cos theta/(1+sin theta)=(1-sin theta)/cos theta

Inverse of the matrix [(cos 2 theta,-sin 2theta),(sin 2 theta, cos 2theta)] is

(1 + sin theta-cos theta) / (1 + sin theta + cos theta) =

((sin theta+cos theta)^(2)-1)/(sin theta*cos theta)

Prove the orthogonal matrices of order two are of the form [(cos theta,-sin theta),(sin theta,cos theta)] or [(cos theta,sin theta),(sin theta,-cos theta)]