Home
Class 12
MATHS
For each real x, -1 lt x lt 1. Let A(x) ...

For each real `x, -1 lt x lt 1`. Let A(x) be the matrix `(1-x)^(-1) [(1,-x),(-x,1)]` and `z=(x+y)/(1+xy)`. Then

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (OBJECTIVE) (Level-I)|49 Videos
  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (OBJECTIVE) (Level-II)|17 Videos
  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (SUBJECTIVE) (Level-I)|12 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • PARABOLA

    FIITJEE|Exercise NUMERICAL BASED|5 Videos

Similar Questions

Explore conceptually related problems

If -1 lt x lt 0 then sin^(-1) x equals-

If -1lt x lt 0 then tan^(-1) x equals

If 1 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

If x lt 1 , y lt -1, then (x-1,y-3) lies in :

If -1 lt x lt 0 , then cos^(-1) x is equal to

2x - y gt 1 , x - 2y lt 1

Lt_(x rarr oo)((1)/(e)-(x)/(1+x))^(x)=

If x lt 0 , lt 0 , x + y +(x)/4=(1)/(2) and (x+y)((x)/y)=-(1)/(2) then :