Home
Class 12
MATHS
If matrix A =[{:( a,b,c),(b,c,a),(c,a,b)...

If matrix A `=[{:( a,b,c),(b,c,a),(c,a,b) :}]` where a,b,c are real positive number ,abc =1 and `A^(T) A = I ` then
Which of the following is/are true

A

`a+b+c= 1`

B

`a^(2)+b^(2) +c^(2) =1`

C

` ab+bc+cane0`

D

`a^(3) +b^(3) +c^(3)= 4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A \) and the conditions provided. ### Step 1: Understand the matrix \( A \) The matrix \( A \) is given as: \[ A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \] where \( a, b, c \) are positive real numbers and \( abc = 1 \). ### Step 2: Calculate \( A^T \) The transpose of matrix \( A \) is: \[ A^T = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \] Since the matrix is symmetric, \( A^T = A \). ### Step 3: Calculate \( A^T A \) Now, we compute \( A^T A \): \[ A^T A = A A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix} \] Calculating the elements of \( A^T A \): - The (1,1) entry: \[ a^2 + b^2 + c^2 \] - The (1,2) entry: \[ ab + bc + ca \] - The (1,3) entry: \[ ac + ab + bc \] - The (2,1) entry: \[ ab + bc + ca \] - The (2,2) entry: \[ b^2 + c^2 + a^2 \] - The (2,3) entry: \[ bc + ca + ab \] - The (3,1) entry: \[ ac + ab + bc \] - The (3,2) entry: \[ bc + ca + ab \] - The (3,3) entry: \[ c^2 + a^2 + b^2 \] Combining these, we have: \[ A^T A = \begin{pmatrix} a^2 + b^2 + c^2 & ab + bc + ca & ab + ac + bc \\ ab + bc + ca & b^2 + c^2 + a^2 & ab + ac + bc \\ ab + ac + bc & ab + ac + bc & c^2 + a^2 + b^2 \end{pmatrix} \] ### Step 4: Set \( A^T A = I \) Since \( A^T A = I \), we have: \[ \begin{pmatrix} a^2 + b^2 + c^2 & ab + bc + ca & ab + ac + bc \\ ab + bc + ca & b^2 + c^2 + a^2 & ab + ac + bc \\ ab + ac + bc & ab + ac + bc & c^2 + a^2 + b^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Equate the entries From the equality, we can derive: 1. \( a^2 + b^2 + c^2 = 1 \) 2. \( ab + bc + ca = 0 \) ### Step 6: Analyze \( a + b + c \) Using the identity: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] Substituting the known values: \[ (a + b + c)^2 = 1 + 2(0) = 1 \] Thus, \( a + b + c = 1 \). ### Step 7: Calculate \( a^3 + b^3 + c^3 \) Using the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] Substituting the known values: \[ a^3 + b^3 + c^3 - 3(1) = 1(1 - 0) \Rightarrow a^3 + b^3 + c^3 - 3 = 1 \] Thus, \( a^3 + b^3 + c^3 = 4 \). ### Conclusion From the above calculations, we can conclude: 1. \( a^2 + b^2 + c^2 = 1 \) (True) 2. \( ab + bc + ca = 0 \) (True) 3. \( a + b + c = 1 \) (True) 4. \( a^3 + b^3 + c^3 = 4 \) (True)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    FIITJEE|Exercise COMPREHENSIONS|8 Videos
  • MATRICES

    FIITJEE|Exercise MATCH THE COLUMN|4 Videos
  • MATRICES

    FIITJEE|Exercise ASSIGNMENT PROBLEM (OBJECTIVE) (Level-I)|49 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • PARABOLA

    FIITJEE|Exercise NUMERICAL BASED|5 Videos

Similar Questions

Explore conceptually related problems

Given a matrix A=[[a,b,cb,c,ac,a,b]], where a,b,c are real positive numbers abc=1 and A^(T)A=I, then find the value of a^(3)+b^(3)+c^(3)

If a, b, c are positive real numbers such that a+b+c=2 then, which one of the following is true?

If a, b, c are positive real numbers such that a+b+c=p then, which of the following is true?

If a, b and c are three real numbers, then which of the following is NOT true ?

If 4ac>b^(2) and a+c>b for real numbers a,b and c,then which of the following is true?

If the matrix {:[(a+b,0,0),(0,b+c,0),(0,0,c+a)]:} , (where a,b,c are positive integers) is a scalar matrix, then the value of (a+b+c) can be

The number of (a, b, c), where a, b, c are positive integers such that abc = 30, is

Let a,b,c be positive real numbers with abc=1 let A =[{:(a,b,c),(b,c,a),(c,a,b):}] if A ^(T) A =I where A^(T) is the transpose of A and I is the identity matrix , then determine the value of a^(2) +b^(2)+c^(2)

FIITJEE-MATRICES -ASSIGNMENT PROBLEM (OBJECTIVE) (Level-II)
  1. A = [{:( a,b,c) ,( b,c,a),(c,a,b) :}] if trace (A)= 9 and a,b , c are ...

    Text Solution

    |

  2. If A matrix of size nxxn such that A^(2) +A+2l =0 then

    Text Solution

    |

  3. Suppose that a,b,c are real numbers such that a+b+ c =1 If the matrix...

    Text Solution

    |

  4. In a set a =( 3^(3), 7^(3) , 11 ^(3) ,15^(3) …) if 9 elements are sele...

    Text Solution

    |

  5. The value of lamda so that the matric A^(-1)lamdaI is singular where A...

    Text Solution

    |

  6. If omega!=1 is a cube root of unity, then find the value of |[1+2omega...

    Text Solution

    |

  7. If A and B are two invertible matrices of the same order, then adj (AB...

    Text Solution

    |

  8. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  9. If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),...

    Text Solution

    |

  10. Three matrices are given as A = [{:( alpha ^(2) ,4,6),(9,beta ^(4) , 7...

    Text Solution

    |

  11. Which of the following is/are true ?

    Text Solution

    |

  12. If M is the skew symmetric matrix of order nxxn then ,

    Text Solution

    |

  13. If A= [{:( alpha, beta ),( 0,alpha ) :}] is then n^(th ) root of I2 ...

    Text Solution

    |

  14. If matrix A =[{:( a,b,c),(b,c,a),(c,a,b) :}] where a,b,c are real posi...

    Text Solution

    |

  15. Suppose that a,b,c are real numbers such that a+b+c =1 , if the matrix...

    Text Solution

    |

  16. If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then

    Text Solution

    |

  17. If A=[a(i j)] is a square matrix such that a(i j)=i^2-j^2 , then wr...

    Text Solution

    |