Home
Class 11
MATHS
If cos A =(21)/(29) and A lies in the fo...

If cos `A =(21)/(29)` and A lies in the fourth quadrant , find `"sin" A and tan A`.
If `"sin" A=(21)/(29)` and A lies in the second quadrant prove that sec `A + tan A=(-5)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will break down each part of the question. ### Part 1: Given \( \cos A = \frac{21}{29} \) and \( A \) lies in the fourth quadrant, find \( \sin A \) and \( \tan A \). 1. **Identify the known values**: - \( \cos A = \frac{21}{29} \) - In the fourth quadrant, \( \sin A \) is negative. 2. **Use the Pythagorean identity**: \[ \sin^2 A + \cos^2 A = 1 \] Substitute \( \cos A \): \[ \sin^2 A + \left(\frac{21}{29}\right)^2 = 1 \] 3. **Calculate \( \cos^2 A \)**: \[ \cos^2 A = \left(\frac{21}{29}\right)^2 = \frac{441}{841} \] 4. **Substitute and solve for \( \sin^2 A \)**: \[ \sin^2 A + \frac{441}{841} = 1 \] \[ \sin^2 A = 1 - \frac{441}{841} = \frac{841 - 441}{841} = \frac{400}{841} \] 5. **Take the square root to find \( \sin A \)**: \[ \sin A = -\sqrt{\frac{400}{841}} = -\frac{20}{29} \] (Negative because \( A \) is in the fourth quadrant) 6. **Find \( \tan A \)**: \[ \tan A = \frac{\sin A}{\cos A} = \frac{-\frac{20}{29}}{\frac{21}{29}} = -\frac{20}{21} \] ### Summary of Part 1: - \( \sin A = -\frac{20}{29} \) - \( \tan A = -\frac{20}{21} \) --- ### Part 2: Given \( \sin A = \frac{21}{29} \) and \( A \) lies in the second quadrant, prove that \( \sec A + \tan A = -\frac{5}{2} \). 1. **Identify the known values**: - \( \sin A = \frac{21}{29} \) - In the second quadrant, \( \cos A \) is negative. 2. **Use the Pythagorean identity to find \( \cos A \)**: \[ \sin^2 A + \cos^2 A = 1 \] Substitute \( \sin A \): \[ \left(\frac{21}{29}\right)^2 + \cos^2 A = 1 \] 3. **Calculate \( \sin^2 A \)**: \[ \sin^2 A = \left(\frac{21}{29}\right)^2 = \frac{441}{841} \] 4. **Substitute and solve for \( \cos^2 A \)**: \[ \frac{441}{841} + \cos^2 A = 1 \] \[ \cos^2 A = 1 - \frac{441}{841} = \frac{400}{841} \] 5. **Take the square root to find \( \cos A \)**: \[ \cos A = -\sqrt{\frac{400}{841}} = -\frac{20}{29} \] (Negative because \( A \) is in the second quadrant) 6. **Find \( \sec A \) and \( \tan A \)**: \[ \sec A = \frac{1}{\cos A} = \frac{1}{-\frac{20}{29}} = -\frac{29}{20} \] \[ \tan A = \frac{\sin A}{\cos A} = \frac{\frac{21}{29}}{-\frac{20}{29}} = -\frac{21}{20} \] 7. **Add \( \sec A \) and \( \tan A \)**: \[ \sec A + \tan A = -\frac{29}{20} - \frac{21}{20} = -\frac{29 + 21}{20} = -\frac{50}{20} = -\frac{5}{2} \] ### Summary of Part 2: - \( \sec A + \tan A = -\frac{5}{2} \) (Proved) ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(c) Long Answer type Question-I|6 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(c) Long Answer type Question-II|2 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(b) Long Answer type Question-II|1 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

If sin theta =(24)/(25) and theta lies in the second quadrant, then sec theta + tan theta=

If cos x=3/5 and x lies in the fourth quadrant find the values of cosec x+ cot x .

If tan theta =-(1)/(sqrt10)and theta lies in the fourth quadrant, then sec theta =

If cosA=5/13 and A lies in fourth quadrant, find the remaining trignometric ratios.

If cos A=-(5)/(13) and A is not in third quadrant,then value of sin A-tan A is

If cos (x)/(2) =(12)/(13) and x lies in Quadrant I find the value of sin x

If sin theta =(21)/(29) and theta lies in the second quadrant, find the value of sec theta + tan theta is

If sin theta+cos theta=0 and theta lies in the fourth quadrant,find sin theta and cos theta

Find sin theta and tan theta if cos theta=-(12)/(13) andth eta lies in the third quadrant.

If tan theta = -1/sqrt(5) and theta lies in the fourth quadrant, then: cos theta =