Home
Class 11
MATHS
Prove in any triangle ABC that (i)a(...

Prove in any `triangle` ABC that
(i)`a(cos B+cos C)=2(b+c) "sin"^(2)(A)/(2)`
(ii) `a(cos C- cosB)= 2(b-c )"cos"^(2)(A)/(2)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (MULTIPLE CHOICE QUESTIONS)|25 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(n)Long Answer type Question-I|10 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

For any triangle ABC,prove that a(b cos C-c cos B)=b^(2)-c^(2)

In any triangle ABC,show that: 2a cos((B)/(2))cos((C)/(2))=(a+b+c)sin((A)/(2))

In any triangle ABC, prove that: a cos((B+C)/(2))=(b+c)(sin A)/(2)

In any triangle ABC, prove that following: (a-b)(cos C)/(2)c sin((A-B)/(2))

For any triangle ABC,prove that a cos A+b cos B+c cos C=2a sin B sin C

In any triangle ABC, prove that: a cos A+b cos B+c cos C=2a sin B sin C

In a triangle ABC, prove that (a)cos(A+B)+cos C=0(b)tan((A+B)/(2))=cot((C)/(2))

In any triangle ABC, prove that (i) (a-b)/( c)=("sin"(A-B)/(2))/("cos"( C)/(2)) (ii) (b-c)/(a)=("sin"(B-C)/(2))/("cos"(A)/(2))

For any triangle ABC, prove that (sin(B-C))/(2)=(b-c)/(a)((cos A)/(2))])

In any triangle ABC prove that: sin((B-C)/(2))=((b-c)/(a))(cos A)/(2)