Home
Class 11
MATHS
Prove in any triangle ABC that (i)(a ...

Prove in any `triangle` ABC that
(i)`(a "sin"(B-C))/(b^(2)-c^(2))=(ab"sin"(C-A))/(c^(2)-a^(2))=(c "sin"(A-B))/(a^(2)-b^(2))`
(ii) `(c^(2)-a^(2)+b^(2))"tan"A=(a^(2)-b^(2)+c^(2)) "tan"B=(b^(2)-c^(2)+a^(2))"tan"C`.

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (MULTIPLE CHOICE QUESTIONS)|25 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(n)Long Answer type Question-I|10 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

Prove that (a sin(B-C))/(b^(2)-c^(2))=(b sin(C-A))/(c^(2)-a^(2))=(c sin(A-B))/(a^(2)-b^(2))

If any triangle ABC, that: (a sin(B-C))/(b^(2)-c^(2))=(b sin(C-A))/(c^(2)-a^(2))=(csin(A-B))/(a^(2)-b^(2))

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In a ABC, prove the following: (c^(2)-a^(2)+b^(2))tan A=(a^(2)-b^(2)+c^(2))tan B=(b^(2)-c^(2)+a^(2))tan C

In triangle ABC(a^(2)-b^(2)-c^(2))tan A+(a^(2)-b^(2)+c^(2))tan B=

In tringle ABC (a^(2)-b^(2)-c^(2))tan A+(a^(2)-b^(2)+c^(2))tan B=

In any triangle ABC, prove that following: a^(2)sin(B-C)=(b^(2)-c^(2))s in A

In any triangle ABC, show that: 2a sin((B)/(2))sin((C)/(2))=(b+c-a)sin((A)/(2))

In any triangle ABC, prove that following: a(sin A)/(2)sin((B-C)/(2))+b(sin B)/(2)sin((C-A)/(2))+sin((A-B)/(2))=0