Home
Class 11
MATHS
Prove in any triangle ABC that (i)("ta...

Prove in any `triangle` ABC that
(i)`("tan"C)/("tan"A)=(b^(2)+c^2 -a^2)/(a^(2)+b^2 -c^2)`
`b^(2) "sin"2C+c^(2) "sin"2B= 2bc sin A`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (MULTIPLE CHOICE QUESTIONS)|25 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (FILL IN THE BLANKS)|10 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Exercise 3(n)Long Answer type Question-I|10 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that: (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

For any triangle ABC, prove that (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

In any triangle ABC, (a+b)^2 sin^2 ((C )/(2))+(a-b)^2 cos^2 ((C )/(2))= .

For any triangle ABC, prove that (sin(B-C))/(2)=(b-c)/(a)((cos A)/(2))])

For any triangle ABC,prove that (b^(2)-c^(2))/(a^(2))sin2A+(c^(2)-a^(2))/(b^(2))sin2B+(a^(2)-b^(2))/(c^(2))sin2C=0

Prove in any triangle ABC that (i) (a "sin"(B-C))/(b^(2)-c^(2))=(ab"sin"(C-A))/(c^(2)-a^(2))=(c "sin"(A-B))/(a^(2)-b^(2)) (ii) (c^(2)-a^(2)+b^(2))"tan"A=(a^(2)-b^(2)+c^(2)) "tan"B=(b^(2)-c^(2)+a^(2))"tan"C .

In a triangle ABC, prove that (a^2+b^2-c^2)tan C-(b^2+c^2-a^2)tan A=0

In any triangle ABC prove that: sin((B-C)/(2))=((b-c)/(a))(cos A)/(2)

In any triangle ABC, prove that: a cos((B+C)/(2))=(b+c)(sin A)/(2)

In any triangle ABC, show that: 2a sin((B)/(2))sin((C)/(2))=(b+c-a)sin((A)/(2))