Home
Class 11
MATHS
Maximum and minimum values of 15 cos the...

Maximum and minimum values of `15 cos theta-8 sin theta` are…......... and ….......

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the expression \( 15 \cos \theta - 8 \sin \theta \), we can use the following steps: ### Step 1: Identify the coefficients The expression can be rewritten in the form \( a \cos \theta + b \sin \theta \), where: - \( a = 15 \) - \( b = -8 \) ### Step 2: Calculate \( \sqrt{a^2 + b^2} \) To find the maximum and minimum values, we first calculate \( \sqrt{a^2 + b^2} \): \[ a^2 = 15^2 = 225 \] \[ b^2 = (-8)^2 = 64 \] \[ a^2 + b^2 = 225 + 64 = 289 \] \[ \sqrt{a^2 + b^2} = \sqrt{289} = 17 \] ### Step 3: Determine the maximum and minimum values The maximum value of the expression \( 15 \cos \theta - 8 \sin \theta \) is given by: \[ \text{Maximum value} = \sqrt{a^2 + b^2} = 17 \] The minimum value is given by: \[ \text{Minimum value} = -\sqrt{a^2 + b^2} = -17 \] ### Final Answer Thus, the maximum and minimum values of \( 15 \cos \theta - 8 \sin \theta \) are \( 17 \) and \( -17 \), respectively. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (TRUE/FALSE QUESTIONS)|5 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (VERY SHORT ANSWER TYPE QUESTIONS)|18 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (MULTIPLE CHOICE QUESTIONS)|25 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

The minimum value of (cos theta-sin theta) is

The minimum value of (cos theta-sin theta ) is

Write the maximum and minimum values of cos theta

The minimum value of 7cos theta+24sin theta is

Maximum value of 3 cos theta + 4 sin theta is

Find the maximum and minimum values of 7 cos theta+24 sin theta:

Find the maximum and minimum values of 7cos theta+24sin theta

Maximum value of (cos theta-sin theta) is :

Find the maximum and minimum value of 5cos theta+12sin theta+12