Home
Class 11
MATHS
Find "sin"2theta when "sin"theta+costhet...

Find `"sin"2theta` when `"sin"theta+costheta`=1.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\sin 2\theta\) given that \(\sin \theta + \cos \theta = 1\), we can follow these steps: ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \sin \theta + \cos \theta = 1 \] 2. **Square both sides of the equation:** \[ (\sin \theta + \cos \theta)^2 = 1^2 \] This expands to: \[ \sin^2 \theta + 2\sin \theta \cos \theta + \cos^2 \theta = 1 \] 3. **Use the Pythagorean identity:** We know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] So we can substitute this into our equation: \[ 1 + 2\sin \theta \cos \theta = 1 \] 4. **Simplify the equation:** Subtract 1 from both sides: \[ 2\sin \theta \cos \theta = 0 \] 5. **Solve for \(\sin 2\theta\):** Recall that: \[ \sin 2\theta = 2\sin \theta \cos \theta \] Therefore, substituting from the previous step: \[ \sin 2\theta = 0 \] ### Final Answer: \[ \sin 2\theta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise COMPETITION FILE|17 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Chapter Test (3)|12 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Revision Exerise|31 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

Find "sin" 2theta when "sin" theta+cos theta=1 .

(i) "sin"theta cot theta + "sin"theta cosectheta = 1+ costheta (ii) sectheta(1-"sin"theta) (sectheta+tantheta)=1 (iii) "sin"theta(1+"tan"theta)+costheta(1+cottheta)=sectheta+cosectheta

(i) ("sin"theta "tan"theta)/(1-costheta)=1sectheta (1+costheta)/(1-costheta)=("tan"^2theta)/((sectheta-1))^2

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

Find (dy)/(dx), when x=a(cos theta+theta sin theta) and y=a(sin theta-theta cos theta)

If sin theta - cos theta =1/29 find the value of sintheta + costheta .

If sin theta_1 + sin theta_2 + sintheta_3 =3 then cos theta_1 + cos theta_2 + costheta_3 is equal to

Prove the following Identities (1+sin theta-costheta)/(1+ sintheta+costheta)= tan(theta/2)

Evaluate : ( ( Sin^3theta + Cos^3theta ) / ( Sintheta + Costheta ) ) + Sintheta Costheta =

If sintheta+costheta=a then find sin^4theta+cos^4theta