Home
Class 11
MATHS
Prove that : sin^2(72^@) - sin^2 (60^@) ...

Prove that : `sin^2(72^@) - sin^2 (60^@) = (sqrt5 - 1)/8`

Text Solution

Verified by Experts

The correct Answer is:
`(sqrt(5-1))/(8)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise COMPETITION FILE|17 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Chapter Test (3)|12 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Revision Exerise|31 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)(72^(@))-sin^(2)(60^(@))=(sqrt(5)-1)/(8)

Provet that: sin^(2)72^(2)-sin^(2)60^(2)=(sqrt(5)-1)/(8)

Prove that (i) "sin"^(2) 24^(@) - sin^(2) 6^(@) =((sqrt(5)-1))/(8) " "(ii) "sin"^(2) 72^(@) - cos^(2) 30^(@) =(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

Prove that: sin^(2)42^(2)-cos^(2)78^(@)=(sqrt(5)+1)/(8)

Prove that: sin^(2)42^(0)-cos^(2)78^(0)=(sqrt(5)+1)/(8)

Prove that sin^(2)48^(@)-cos^(2)12^(@)=-(sqrt(5)+1)/(8)

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)