Home
Class 11
MATHS
If A = "sin"^(2)x + cos^(4)x then for al...

If `A = "sin"^(2)x + cos^(4)x` then for all realx :

A

`(3)/(4)leAle1`

B

`(13)/(16)leAle1`

C

`1leAle2`

D

`(3)/(4)leAle(13)/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of \( A = \sin^2 x + \cos^4 x \), we will follow these steps: ### Step 1: Rewrite \( A \) We start with the expression: \[ A = \sin^2 x + \cos^4 x \] Using the identity \( \sin^2 x + \cos^2 x = 1 \), we can express \( \cos^4 x \) in terms of \( \sin^2 x \): \[ \cos^4 x = (\cos^2 x)^2 = (1 - \sin^2 x)^2 \] Thus, we can rewrite \( A \) as: \[ A = \sin^2 x + (1 - \sin^2 x)^2 \] ### Step 2: Expand \( A \) Now, we expand the square: \[ A = \sin^2 x + (1 - 2\sin^2 x + \sin^4 x) \] This simplifies to: \[ A = \sin^4 x - \sin^2 x + 1 \] ### Step 3: Substitute \( y = \sin^2 x \) Let \( y = \sin^2 x \). Then \( y \) ranges from 0 to 1. We can rewrite \( A \) in terms of \( y \): \[ A = y^2 - y + 1 \] ### Step 4: Find the critical points To find the maximum and minimum values of \( A \), we differentiate \( A \) with respect to \( y \): \[ \frac{dA}{dy} = 2y - 1 \] Setting the derivative equal to zero to find critical points: \[ 2y - 1 = 0 \implies y = \frac{1}{2} \] ### Step 5: Evaluate \( A \) at critical points and endpoints Now we evaluate \( A \) at \( y = 0 \), \( y = 1 \), and \( y = \frac{1}{2} \): 1. For \( y = 0 \): \[ A(0) = 0^2 - 0 + 1 = 1 \] 2. For \( y = 1 \): \[ A(1) = 1^2 - 1 + 1 = 1 \] 3. For \( y = \frac{1}{2} \): \[ A\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} + 1 = \frac{1}{4} - \frac{1}{2} + 1 = \frac{1}{4} - \frac{2}{4} + \frac{4}{4} = \frac{3}{4} \] ### Step 6: Determine maximum and minimum values From the evaluations: - \( A(0) = 1 \) - \( A(1) = 1 \) - \( A\left(\frac{1}{2}\right) = \frac{3}{4} \) Thus, the minimum value of \( A \) is \( \frac{3}{4} \) and the maximum value is \( 1 \). ### Final Result We conclude that: \[ \frac{3}{4} \leq A \leq 1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Chapter Test (3)|12 Videos
  • TRIGONOMETRY

    MODERN PUBLICATION|Exercise Check your unders"tan"ding|10 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise Chapter test|12 Videos

Similar Questions

Explore conceptually related problems

If A= sin^(2) x + cos^(4) x then for all real x

If A=sin^(2)x+cos^(4)x, then for all real x:

If sin^(4)2x+cos^(4)2x=sin2x*cos2x then x=

If sin^(4)x+cos^(4)y+2=4sin x cos y then the value of sin x+cos y is equal to

If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then

For all x in R, let f(x)=sin^(4)x+cos^(4)x and g(x)=sin^(6)x+cos^(6)x, then (3f(x)-2g(x)) is equal to

MODERN PUBLICATION-TRIGONOMETRY-COMPETITION FILE
  1. If p and q are positive real numbers such that p^2+q^2=1 then find the...

    Text Solution

    |

  2. Let A and B denote the statements A : cos alpha + cos beta + cos gam...

    Text Solution

    |

  3. Let cos(alpha+beta)=(4)/(5) and let sin(alpha-beta)=(5)/(13), where 0 ...

    Text Solution

    |

  4. If A = "sin"^(2)x + cos^(4)x then for all realx :

    Text Solution

    |

  5. The possible values of theta in (0, pi) such that sin(theta)+sin(4thet...

    Text Solution

    |

  6. The solution of the equation e^(sin x) - e^(-sin x) - 4 = 0

    Text Solution

    |

  7. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  8. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as :

    Text Solution

    |

  9. Let fk(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f4(...

    Text Solution

    |

  10. If 0 le x le 2pi, then the number of real values of x, which satisfy t...

    Text Solution

    |

  11. If 5(tan^2x - cos^2x)=2cos 2x + 9, then the value of cos4x is

    Text Solution

    |

  12. For a regular polygon, let r and R be the radii of the inscribed and ...

    Text Solution

    |

  13. ABCD is a trapezium such that AB and CD are parallel and BC bot CD. If...

    Text Solution

    |

  14. If the sum of all the solutions of the equation 8 cosx.(cos(pi/6+x)cos...

    Text Solution

    |

  15. The maximum values of 3 costheta+5sin(theta-(pi)/(6)) for any real val...

    Text Solution

    |

  16. cos^(2)10^(@)+cos^(2)50^(@)-cos10^(@)cos50^(@) is equal to

    Text Solution

    |

  17. Let S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0}, the...

    Text Solution

    |