Home
Class 11
MATHS
Let P(n) be the statement: C(r)len! for ...

Let P(n) be the statement: `C_(r)len!` for `1le r le n`
Is P(3) true ?

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement \( P(3) \) is true, we need to analyze the inequality given by \( C(n, r) \leq n! \) for \( 1 \leq r \leq n \) when \( n = 3 \). ### Step-by-Step Solution: 1. **Define the Statement**: We need to check if \( C(3, r) \leq 3! \) for all \( r \) such that \( 1 \leq r \leq 3 \). 2. **Calculate \( 3! \)**: \[ 3! = 3 \times 2 \times 1 = 6 \] 3. **Calculate \( C(3, r) \)** for \( r = 1, 2, 3 \): - For \( r = 1 \): \[ C(3, 1) = \frac{3!}{(3-1)! \cdot 1!} = \frac{3!}{2! \cdot 1!} = \frac{6}{2 \cdot 1} = 3 \] - For \( r = 2 \): \[ C(3, 2) = \frac{3!}{(3-2)! \cdot 2!} = \frac{3!}{1! \cdot 2!} = \frac{6}{1 \cdot 2} = 3 \] - For \( r = 3 \): \[ C(3, 3) = \frac{3!}{(3-3)! \cdot 3!} = \frac{3!}{0! \cdot 3!} = \frac{6}{1 \cdot 6} = 1 \] 4. **Check the Inequality**: - For \( r = 1 \): \[ C(3, 1) = 3 \leq 6 \quad \text{(True)} \] - For \( r = 2 \): \[ C(3, 2) = 3 \leq 6 \quad \text{(True)} \] - For \( r = 3 \): \[ C(3, 3) = 1 \leq 6 \quad \text{(True)} \] 5. **Conclusion**: Since \( C(3, r) \leq 3! \) holds true for all \( r \) in the range \( 1 \leq r \leq 3 \), we conclude that \( P(3) \) is true.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL INDUCTION

    MODERN PUBLICATION|Exercise CHAPTER TEST 4|12 Videos
  • MATHEMATICAL INDUCTION

    MODERN PUBLICATION|Exercise Revision Exercise|14 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHAPTER TEST 14|12 Videos

Similar Questions

Explore conceptually related problems

Let P (n) be the statement C_(r) le n! for 1 le r le n then P(n + 1) = ________

If P(n) is the statement : C_(r) le n! for 1 le r le n then: (i) find P(n + 1) (ii) show that P(3) is true

Let P (n) be the statement. “ P (n) = 16 n + 3 is prime. Is P (3) true ?

Let P(n) be the statement : 2^(n)gt 1 . Is P(1) true ?

Let P (n) be the statement 2^(n) ge n . When P (r) is true, then is it true that P (r + 1) is also true ?

Let P(n) be the statement 3^(n)>n. If P(n) is true,P(n+1) is also true.

Let P(n) be the statement : 10n + 3 is prime. Is P(3) true ?

Let P(n) be the statement: 2^(n)>=3n. If P(r) is true,show that P(r+1) is true.Do you conclude that P(n) is true for all n in N

Let P(n) denote the statement: 2^(n)ge n! .Show that P(1),P(2),P(3) are true butP(4) is not true.

Let P (n) be the statement 2^(3n) - 1 is integral multiple of 7. Then P (3) is true.