Home
Class 11
MATHS
Compute the following (i) 2xx6!-3xx5...

Compute the following
(i) `2xx6!-3xx5!`
(ii) `3xx4!+7xx4!`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### Problem (i): Compute `2 × 6! - 3 × 5!` 1. **Rewrite Factorials**: - Recall that \(6! = 6 \times 5!\). Therefore, we can rewrite the expression: \[ 2 \times 6! = 2 \times (6 \times 5!) = 12 \times 5! \] Now the expression becomes: \[ 12 \times 5! - 3 \times 5! \] 2. **Factor Out \(5!\)**: - We can factor out \(5!\) from both terms: \[ (12 - 3) \times 5! = 9 \times 5! \] 3. **Calculate \(5!\)**: - Now, calculate \(5!\): \[ 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 \] 4. **Final Calculation**: - Substitute \(5!\) back into the expression: \[ 9 \times 120 = 1080 \] Thus, the result for part (i) is **1080**. ### Problem (ii): Compute `3 × 4! + 7 × 4!` 1. **Factor Out \(4!\)**: - Similar to the previous problem, we can factor out \(4!\): \[ 3 \times 4! + 7 \times 4! = (3 + 7) \times 4! = 10 \times 4! \] 2. **Calculate \(4!\)**: - Now, calculate \(4!\): \[ 4! = 4 \times 3 \times 2 \times 1 = 24 \] 3. **Final Calculation**: - Substitute \(4!\) back into the expression: \[ 10 \times 24 = 240 \] Thus, the result for part (ii) is **240**. ### Summary of Results: - (i) \(2 \times 6! - 3 \times 5! = 1080\) - (ii) \(3 \times 4! + 7 \times 4! = 240\)
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (b) Short Answer Type Questions|16 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (b) Long Answer Type Questions - I|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|4 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find each of the following products: ( i ) 3xx(-8)xx5( ii) 9xx(-3)xx(-6)

Find each of the following products: ( i ) (-2)xx36xx(-5)( ii) (-2)xx(-4)xx(-6)xx(-8)

Calculate the following a. (6.7 xx 10^(5)) xx (4.6 xx 10^(4)) b. (7.6 xx 10^(7)) xx (3.8 xx 10^(-4)) c. (6.8 xx 10^(-3)) xx (5.2 xx 10^(-4)) d. (6.7 xx 10^(5)) / (4.6 xx 10^(4)) e. (7.6 xx 10^(7)) / (3.8 xx 10^(-4)) f. (6.8 xx 10^(-3)) / (3.8 xx 10^(-4)) g. 7.65 xx 10^(2) + 2.72 xx 10^(3) h. 7.87 xx 10^(-4) - 2.61 xx 10^(-5)

Find the products : (i) (-2) xx 3 xx (-4) " " (ii) 2 xx (-5) xx (-6) " " (iii) (-8) xx 3 xx 5 (iv) 8 xx 7 xx (-10) " " (v) (-3) xx (-7) xx (-6)

Show that each of the following sisa composite number . (i) 5xx 11xx 13 +13 (ii) 6xx 5xx 4xx 3xx2xx1+5

Multiply and reduce to lowest form : (i) 7 xx 3/5 (ii) 4 xx 1/3 (iii) 2 xx 6/7 (iv) 2/3 xx 4 (v) 5/2 xx 6 (vi) (11) 4/7 (vii) 20 xx 4/5 (viii) 13 xx 1/3 (ix) 15 xx 3/5

Simplify the following (a) (4)^2xx(-6)^3 (c) (-6)^2/4^3xx5^3xx2^5

Find each of the following products: i 3xx4xx(-5) ii 2xx(-5)xx(-6) iii (-5)xx(-8)xx(-3) iv (-6)xx6xx(-10) v 7xx(-8)xx3 vi (-7)xx(-3)xx4

Express each of the following in exponential form: (-5)xx(-5)xx(-5) (ii) (-5)/7xx(-5)/7xx(-5)/7xx(-5)/7 (iii) 4/3xx4/3xx4/3xx4/3xx4/3

Simplify and express each of the following in exponential form: (i) (2^(3)xx3^(4)xx4)/(3xx32) (ii) (5^(2))^(3)xx5^(4)5^(7)