Home
Class 11
MATHS
Compute (12!)/((10)!(2)!)....

Compute `(12!)/((10)!(2)!)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{12!}{10! \cdot 2!}\), we can follow these steps: ### Step 1: Write out the factorials We know that: - \(12! = 12 \times 11 \times 10!\) - \(10! = 10 \times 9 \times 8 \times \ldots \times 1\) - \(2! = 2 \times 1 = 2\) ### Step 2: Substitute \(12!\) in the expression Substituting \(12!\) into the expression, we have: \[ \frac{12!}{10! \cdot 2!} = \frac{12 \times 11 \times 10!}{10! \cdot 2!} \] ### Step 3: Cancel \(10!\) Now, we can cancel \(10!\) from the numerator and the denominator: \[ \frac{12 \times 11 \times \cancel{10!}}{\cancel{10!} \cdot 2!} = \frac{12 \times 11}{2!} \] ### Step 4: Substitute \(2!\) Now, substituting \(2!\) into the expression: \[ \frac{12 \times 11}{2} = \frac{12 \times 11}{2 \times 1} = \frac{12 \times 11}{2} \] ### Step 5: Perform the multiplication and division Calculating the multiplication: \[ 12 \times 11 = 132 \] Now divide by 2: \[ \frac{132}{2} = 66 \] ### Final Answer Thus, the value of \(\frac{12!}{10! \cdot 2!}\) is \(66\). ---
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (b) Short Answer Type Questions|16 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (b) Long Answer Type Questions - I|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|4 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Compute: (10!)/(6!10!)

(a) Compute (i) 20(!)/(18)!( ii) 10(!)/(6!.4!) (b)find n if (n+2)!=2550*n!

Compute (8!)/(6!xx2!)

Compute: (i) (10!)/((7!)xx(3!))" " (ii) (30!)/(28!)" " (iii) (11!-10!)/(9!)

Compute: (11!-10!)/(9!)

Compute: (i) (9!)/((5!)xx(3!))" " (ii) (32!)/(29!)" " (iii) ((12!)-(10!))/(9!)

Compute (8!)/(6! xx 2!)

Compute : [(1,0),(0,1)][(2,-1),(1,2)]

Compute: 5/(12)-7/(12)+(11)/(12)