Home
Class 11
MATHS
Compute (20!)/(18!(20-18))....

Compute `(20!)/(18!(20-18))`.

Text Solution

AI Generated Solution

The correct Answer is:
To compute the expression \(\frac{20!}{18!(20-18)}\), we can follow these steps: ### Step 1: Simplify the expression We start with the expression: \[ \frac{20!}{18!(20-18)} \] First, we simplify \(20 - 18\): \[ 20 - 18 = 2 \] So, we rewrite the expression as: \[ \frac{20!}{18! \cdot 2} \] ### Step 2: Expand \(20!\) Using the factorial definition, we can expand \(20!\): \[ 20! = 20 \times 19 \times 18! \] Now substitute this back into our expression: \[ \frac{20 \times 19 \times 18!}{18! \cdot 2} \] ### Step 3: Cancel out \(18!\) The \(18!\) in the numerator and denominator cancels out: \[ \frac{20 \times 19}{2} \] ### Step 4: Compute the multiplication and division Now, we calculate \(20 \times 19\): \[ 20 \times 19 = 380 \] Then, divide by \(2\): \[ \frac{380}{2} = 190 \] ### Final Answer Thus, the value of \(\frac{20!}{18!(20-18)}\) is: \[ \boxed{190} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (b) Short Answer Type Questions|16 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (b) Long Answer Type Questions - I|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|4 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

(a) Compute (i) 20(!)/(18)!( ii) 10(!)/(6!.4!) (b)find n if (n+2)!=2550*n!

Compute: (18+2xx3.3)+0.003

Solve : ((-5)/(13) + ((-2))/( 13)) + ((- 3)/(8) + (18)/(20))

Find (a) 35-(20) (b) 72-(90) (c) (-15) -(-18) (d) (-20) -(13) (e) 23-(-12) (f) (-32)-(-40)

Unit's digit of (17)^(18)+(18)^(19)+(19)^(20) is

Evaluate the following : (i) 1+.^(20)C_(1)+^(20)C_(2)+^(20)C_(3)+....+^(20)C_(19)+^(20)C_(20) (ii) ^(10)C_(1)+^(10)C_(2)+^(10)C_(3)+.....+^(10)C_(9) (iii)^(25)C_(1)+^(25)C_(3)+^(25)C_(5)+.....+^(25)C_(25) (iv) ^(18)C_(2)+^(18)C_(4)+^(18)C_(4)+^(18)C_(6)+....+^(18)C_(18)

Subtract: (21)/(25)\ from\ (18)/(20)

The value of sum_(r=0)^(10)(r)^(20)C_(r) is equal to 20(2^(18)+^(19)C_(10)) b.10(2^(18)+^(19)C_(10)) c.20(2^(18)+^(19)C_(11)) d.10(2^(18)+^(19)C_(11))