Home
Class 11
MATHS
(i) If (1)/(9!)+(1)/(10!)=(n)/(11!), fi...

(i) If `(1)/(9!)+(1)/(10!)=(n)/(11!)`, find n.
(ii) If `(1)/(8!)+(1)/(9!)=(x)/(10!)`, find x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, let's break down each part of the question. ### Part (i): We need to find \( n \) such that: \[ \frac{1}{9!} + \frac{1}{10!} = \frac{n}{11!} \] **Step 1:** Rewrite \( \frac{1}{10!} \) in terms of \( 9! \). \[ \frac{1}{10!} = \frac{1}{10 \times 9!} \] **Step 2:** Substitute this back into the equation. \[ \frac{1}{9!} + \frac{1}{10 \times 9!} = \frac{n}{11!} \] **Step 3:** Factor out \( \frac{1}{9!} \) from the left-hand side. \[ \frac{1}{9!} \left(1 + \frac{1}{10}\right) = \frac{n}{11!} \] **Step 4:** Simplify the expression inside the parentheses. \[ 1 + \frac{1}{10} = \frac{10}{10} + \frac{1}{10} = \frac{11}{10} \] **Step 5:** Substitute this back into the equation. \[ \frac{1}{9!} \cdot \frac{11}{10} = \frac{n}{11!} \] **Step 6:** Rewrite \( \frac{1}{9!} \) in terms of \( 11! \). \[ \frac{1}{9!} = \frac{11!}{11 \times 10 \times 9!} \] **Step 7:** Substitute this into the equation. \[ \frac{11}{10} \cdot \frac{11!}{11 \times 10 \times 9!} = \frac{n}{11!} \] **Step 8:** Simplify the left-hand side. \[ \frac{11!}{10 \times 10} = \frac{n}{11!} \] **Step 9:** Cross-multiply to find \( n \). \[ n = \frac{11! \cdot 11}{10} = 121 \] Thus, the value of \( n \) is **121**. ### Part (ii): We need to find \( x \) such that: \[ \frac{1}{8!} + \frac{1}{9!} = \frac{x}{10!} \] **Step 1:** Rewrite \( \frac{1}{9!} \) in terms of \( 8! \). \[ \frac{1}{9!} = \frac{1}{9 \times 8!} \] **Step 2:** Substitute this back into the equation. \[ \frac{1}{8!} + \frac{1}{9 \times 8!} = \frac{x}{10!} \] **Step 3:** Factor out \( \frac{1}{8!} \) from the left-hand side. \[ \frac{1}{8!} \left(1 + \frac{1}{9}\right) = \frac{x}{10!} \] **Step 4:** Simplify the expression inside the parentheses. \[ 1 + \frac{1}{9} = \frac{9}{9} + \frac{1}{9} = \frac{10}{9} \] **Step 5:** Substitute this back into the equation. \[ \frac{1}{8!} \cdot \frac{10}{9} = \frac{x}{10!} \] **Step 6:** Rewrite \( \frac{1}{8!} \) in terms of \( 10! \). \[ \frac{1}{8!} = \frac{10!}{10 \times 9 \times 8!} \] **Step 7:** Substitute this into the equation. \[ \frac{10}{9} \cdot \frac{10!}{10 \times 9 \times 8!} = \frac{x}{10!} \] **Step 8:** Simplify the left-hand side. \[ \frac{10!}{9 \times 9} = \frac{x}{10!} \] **Step 9:** Cross-multiply to find \( x \). \[ x = 10 \times 10 = 100 \] Thus, the value of \( x \) is **100**. ### Final Answers: (i) \( n = 121 \) (ii) \( x = 100 \)
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (b) Short Answer Type Questions|16 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (b) Long Answer Type Questions - I|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar|4 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If (1)/(9!)+(1)/(10!)=(x)/(11!), find x

If (1)/(9!)+(1)/(10!)=(x)/(11!) then x=

If (1)/(9!)+(1)/(10!)=(n)/(11!) , then n=121 .

If (x)/(10!)=(1)/(8!)+(1)/(9!), find the value of x

Find the value of n if (n)/(11!) = (1)/(9!) +(1)/(10!) .

Given that (1)/(2!17!)+(1)/(3!16!)+(1)/(4!15!)+...+(1)/(8!11!)+(1)/(9!10!)=(N)/(1!18!) ,find floor ((N)/(100)). Here,floor(x) is the greatest integer less than or equal to x.

Prove that: (1)/(9!)+(1)/(10!)+(1)/(11!)=(122)/(11!)

If x+ (1)/(x)=1 , find x^(9) + (1)/(x^(9))=

Find the sum to infinity of the series . (i) 1+ (2)/(11) + (3)/(121) + (4)/(1331) + … + n((1)/(11))^(n-1) + … (ii) 1 + (4)/(7) + (9)/(49) + (16) / (343) +…+ n^(2) ((1)/(7))^(n-1) +…