Home
Class 11
MATHS
Find 'r' if : (i) ""^(5)P(r )= ""^(...

Find 'r' if :
(i) `""^(5)P_(r )= ""^(6)P_(r-1)`
(ii) `5""^(4)P_(r )=6""^(5)P_(r-1)`
(iii) `""^(5)P_(r )=2""^(6)P_(r-1)`
(iv) `""^(10)P_(r+1): ""^(11)P_(r )=30 :11`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will use the formula for permutations, which is defined as: \[ ^nP_r = \frac{n!}{(n-r)!} \] ### (i) Find \( r \) if \( ^5P_r = ^6P_{r-1} \) 1. **Write the permutation formulas:** \[ ^5P_r = \frac{5!}{(5-r)!} \] \[ ^6P_{r-1} = \frac{6!}{(6-(r-1))!} = \frac{6!}{(7-r)!} \] 2. **Set the equations equal:** \[ \frac{5!}{(5-r)!} = \frac{6!}{(7-r)!} \] 3. **Substitute \( 6! \) as \( 6 \times 5! \):** \[ \frac{5!}{(5-r)!} = \frac{6 \times 5!}{(7-r)!} \] 4. **Cancel \( 5! \) from both sides:** \[ \frac{1}{(5-r)!} = \frac{6}{(7-r)!} \] 5. **Cross-multiply:** \[ (7-r)! = 6 \times (5-r)! \] 6. **Expand \( (7-r)! \):** \[ (7-r)(6-r)(5-r)! = 6 \times (5-r)! \] 7. **Cancel \( (5-r)! \):** \[ (7-r)(6-r) = 6 \] 8. **Expand and simplify:** \[ 42 - 13r + r^2 = 6 \] \[ r^2 - 13r + 36 = 0 \] 9. **Factor the quadratic:** \[ (r - 9)(r - 4) = 0 \] 10. **Find the values of \( r \):** \[ r = 9 \quad \text{or} \quad r = 4 \] 11. **Check validity:** Since \( r \) must be less than or equal to 5, the only valid solution is: \[ r = 4 \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (d) Short Answer Type Questions|16 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (d) Long Answer Type Questions - I|21 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (b) Long Answer Type Questions - I|10 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find r, if 5^(4)P_(r)=6^(5)P_(r-1)

Find the value of 'r' if ""^(5)P_(r )=""^(6)P_(r-1) .

(i) If ""^(5)P_(r)=2xx""^(6)P_(r-1) , find r. (ii) If ""^(20)P_(r)=13xx""^(20)P_(r-1) , find r. (iii) If ""^(11)P_(r)=""^(12)P_(r-1) , find r.

Find 'r' when : (i) ""^(10)P_(r )=2 ""^(9)P_(r ) (ii) ""^(11)P_(r )= ""^(12)P_(r-1) .

Prove that: (i) ""^(n)P_(n)=""^(n)P_(n-1) " (ii) "^(n)P_(r)=n* ""^(n-1)P_(r-1) " (iii) "^(n-1)P_(r)+r* ""^(n-1)P_(r-1)=""^(n)P_(r)

What is ""^(n-1)P_(r )+ ""^(n-1)P_(r-1) ?

Find r if (i) .^(5)P_(r) = 2 .^(6)P_(r-1) (ii) .^(5)P_(r) =^(6)P_(r-1) .

If ""^(11)P_(r )= ""^(12)P_(r-1) , then r = ………….