Home
Class 11
MATHS
Find 'n' if : (i) ""^(2n)P(3)=100 "...

Find 'n' if :
(i) `""^(2n)P_(3)=100 ""^(n)P_(2)`
(ii) `""^(n)P_(4)=20xx ""^(n)P_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) based on the two given equations involving permutations. Let's break down each part step by step. ### Part (i): \( (2n)P_3 = 100(n)P_2 \) 1. **Write the formula for permutations**: \[ nPr = \frac{n!}{(n-r)!} \] Therefore, \[ (2n)P_3 = \frac{(2n)!}{(2n-3)!} \quad \text{and} \quad (n)P_2 = \frac{n!}{(n-2)!} \] 2. **Substitute into the equation**: \[ \frac{(2n)!}{(2n-3)!} = 100 \cdot \frac{n!}{(n-2)!} \] 3. **Simplify the left side**: \[ (2n)(2n-1)(2n-2) = 100 \cdot \frac{n!}{(n-2)!} \] The right side simplifies to: \[ 100 \cdot n(n-1) \] 4. **Set the equations equal**: \[ (2n)(2n-1)(2n-2) = 100n(n-1) \] 5. **Expand both sides**: \[ 8n^3 - 12n^2 + 4n = 100n^2 - 100n \] 6. **Rearrange the equation**: \[ 8n^3 - 112n^2 + 104n = 0 \] 7. **Factor out common terms**: \[ 8n(n^2 - 14n + 13) = 0 \] 8. **Solve for \( n \)**: - Set \( 8n = 0 \) gives \( n = 0 \) (not valid in this context). - Solve the quadratic \( n^2 - 14n + 13 = 0 \) using the quadratic formula: \[ n = \frac{14 \pm \sqrt{(-14)^2 - 4 \cdot 1 \cdot 13}}{2 \cdot 1} = \frac{14 \pm \sqrt{196 - 52}}{2} = \frac{14 \pm \sqrt{144}}{2} = \frac{14 \pm 12}{2} \] This gives \( n = 13 \) or \( n = 1 \). ### Part (ii): \( (n)P_4 = 20(n)P_2 \) 1. **Write the formula for permutations**: \[ (n)P_4 = \frac{n!}{(n-4)!} \quad \text{and} \quad (n)P_2 = \frac{n!}{(n-2)!} \] 2. **Substitute into the equation**: \[ \frac{n!}{(n-4)!} = 20 \cdot \frac{n!}{(n-2)!} \] 3. **Cancel \( n! \) from both sides** (assuming \( n! \neq 0 \)): \[ \frac{1}{(n-4)!} = 20 \cdot \frac{1}{(n-2)(n-3)(n-4)!} \] 4. **Multiply both sides by \( (n-4)! \)**: \[ 1 = 20 \cdot \frac{1}{(n-2)(n-3)} \] 5. **Rearrange the equation**: \[ (n-2)(n-3) = 20 \] 6. **Expand and rearrange**: \[ n^2 - 5n + 6 - 20 = 0 \implies n^2 - 5n - 14 = 0 \] 7. **Solve for \( n \)** using the quadratic formula: \[ n = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot (-14)}}{2 \cdot 1} = \frac{5 \pm \sqrt{25 + 56}}{2} = \frac{5 \pm \sqrt{81}}{2} = \frac{5 \pm 9}{2} \] This gives \( n = 7 \) or \( n = -2 \) (not valid). ### Final Solutions: - From part (i): \( n = 13 \) or \( n = 1 \) - From part (ii): \( n = 7 \)
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (d) Short Answer Type Questions|16 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (d) Long Answer Type Questions - I|21 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise EXERCISE 7 (b) Long Answer Type Questions - I|10 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

(i) If ""^(n)P_(5)=20xx""^(n)P_(3) , find n. (ii) If 16xx""^(n)P_(3)=13xx""^(n+1)P_(3) , find n. (iii) If ""^(2n)P_(3)=100xx""^(n)P_(2) , find n.

Find 'n' if 2 ""^(5)P_(3)= ""^(n)P_(4)

Show that ""^(n)P_(n)=2""^(n)P_(n-2)

Find n if ""^(n)P_(4)=18 ""^(n-1)P_3

Prove that : (i) ""^(n)P_(n)=2""^(n)P_(n-2) (ii) ""^(10)P_(3)=""^(9)P_(3)+3""^(9)P_(2) .

If ""^(n)P_(4) =2xx""^(5)P_(3) , find n.