Home
Class 12
MATHS
Let A=[[2,3],[-1,2]] .Then A^(2)-4A+7I=...

Let `A=[[2,3],[-1,2]]` .Then `A^(2)-4A+7I``=`

Text Solution

Verified by Experts

The correct Answer is:
`=[(-118,-93),(31,-118)]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (a) Short Answer Type Questions|21 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (b) Short Answer Type Questions|5 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Illustrative Examples|5 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Let A=[[4,2],[-1,1]] .Then (A-2I)(A-3I) is equal to

If A=[[3, 1], [-1, 2]] and A^(2)-5A+7I=0 , then I=

If A=[[3,1-1,2]], show that A^(2)-5A+7I=0

If A=[[4, -1], [-1, k]] such that A^(2)-6A+7I=0 and k=

Let A=[[2,3-1,2]] and f(x)=x^(2)-4x+7 Show that f(A)=0 Use this result of find A^(5)

Let A=[1 2 2 2 1 2 2 2 1] . Then A^2-4A-5I_3=O b. A^(-1)=1/5(A-4I_3) c. A^3 is not invertible d. A^2 is invertible

A=[[2,0,-12,3,-20,-2,5]], find A^(2)+2A-7I

Let A= [[1,0,2],[2,0,1],[1,1,2]] then det((A-I)^(3)-4A) is

Let A=[[2,4],[-1,-2]] ,then the value of det(1+2A+3A^(2)+4A^(3)+5A^(4)+...+101A^(100)) equals (where I is the identity matrix of order 2)

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)