Home
Class 12
MATHS
Show the A=(1)/(3)[(-1,2,-2),(-2,1,2),(2...

Show the `A=(1)/(3)[(-1,2,-2),(-2,1,2),(2,2,1)]` is proper orthogonal matrix.

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Long Answer Type Questions (I)|27 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Long Answer Type Questions (II)|9 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions II|2 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

STATEMENT -1 : a=(1)/(3){:[(1,-2,2),(-2,1,2),(-2,-2,-1)]:} is an orthogonal matrix and STATEMENT-2 : If A and B are otthogonal, then AB is also orthogonal.

If A=1/3{:[(1,2,2),(2,1,-2),(a,2,b)]:} is an orthogonal matrix, then

If A=(1)/(3)[[1,2,22,1,-2a,2,b]] is an orthogonal ,b=-1 d.b=1

Find the adjoint of the matrix A=[(-1,-2,-2), (2 ,1,-2), (2,-2, 1)] and hence show that A(a d j\ A)=|A|\ I_3 .

(i) Show that the matrix A=[(1,-1,5),(-1,2,1),(5,1,3)] is a symmetric matrix. Show that the matrix A=[(0,1,-1),(-1,0,1),(1,-1,0)] is a skew symmetric matrix

show that the matrix A=[(2,-2,-4),(-1,3,4),(1,-2,-3)] is idempotent.

If A=[(1,0),(3,-1),(-5,2)] and B=[(1,-2),(-2,2),(1,1)] , then find the matrix 'X' such that 3A + X = 5B.