Home
Class 12
MATHS
If X'=[(3,4),(-1,2),(0,1)] and Y=[(-1,2,...

If `X'=[(3,4),(-1,2),(0,1)]` and `Y=[(-1,2,1),(1,2,3)]`, then find `X'-Y'`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( X' - Y' \), we first need to determine the transposes of matrices \( X \) and \( Y \). Given: \[ X' = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} \] \[ Y = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} \] ### Step 1: Find the transpose of matrix \( Y \) The transpose of a matrix is obtained by swapping its rows and columns. Therefore, the transpose \( Y' \) of matrix \( Y \) will be: \[ Y' = \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \] ### Step 2: Perform the subtraction \( X' - Y' \) Now we will subtract \( Y' \) from \( X' \): \[ X' - Y' = \begin{pmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \] To perform the subtraction, we subtract corresponding elements: \[ = \begin{pmatrix} 3 - (-1) & 4 - 1 \\ -1 - 2 & 2 - 2 \\ 0 - 1 & 1 - 3 \end{pmatrix} \] Calculating each element: 1. First row: \( 3 - (-1) = 3 + 1 = 4 \) and \( 4 - 1 = 3 \) 2. Second row: \( -1 - 2 = -3 \) and \( 2 - 2 = 0 \) 3. Third row: \( 0 - 1 = -1 \) and \( 1 - 3 = -2 \) Thus, we have: \[ X' - Y' = \begin{pmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{pmatrix} \] ### Final Answer \[ X' - Y' = \begin{pmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Long Answer Type Questions (I)|27 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Long Answer Type Questions (II)|9 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions II|2 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If A=|(2,2,-4),(-4,2,-4),(2,-1,5)| and B=|(1,-1,0),(2,3,4),(0,1,2)| then find BA and use ths to sovle the system of equations y+2z=7, x-y=3 and 2x+3y+4z=17 .

If 2[{:(3,4),(5,x):}]+[{:(1,y),(0,1):}]=[{:(7,0),(10,5):}] , find (x-y).

If A=[(1,x),(x^(2),4y)] and B=[(-3,1),(1,0)], adj(A)+B=[(1,0),(0,1)] then the values of x and y are

If x+2y=[[2,0,3],[1,-1,1]] and 2x-y=[[1,-4,-5],[0,2,-1]] then

If x+2y=[[2,0,3],[1,-1,1]] and 2x-y=[[1,-4,-5],[0,2,-1]] ,then

If x+y=[[1,4,3] , [-2,5,6] , [7,0,2]] and x-y=[[3,2,5] , [4,1,2] , [1,0,4]] then find x and y

If 2[[3,4],[5,x]]+[[1,y],[0,1]]=[[7,0],[10,6]] then find (x-y)