Home
Class 12
MATHS
If A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,...

If `A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,5,6],[-1,0,1],[2,1,2]], C=[[-1,-21],[-1,2,3],[-1,-2,2]]` find A-2B+3C. Also verify that (A+B)+C=A+(B+C).

Text Solution

Verified by Experts

The correct Answer is:
`[(4,-3,2),(4,2,-4),(10,6,3)]:"Yes"`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Long Answer Type Questions (II)|9 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (f) Short Answer Type Questions|15 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Short Answer Type Questions|16 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,5,6],[-1,0,1],[2,1,2]], C=[[-1,-2,1],[-1,2,3],[-1,-2,2]] find A-2B+3C. Also verify that (A+B)+C=A+(B+C).

If A =[[1,2,3],[-1,0,2],[1,-3,-1]] , B= [[4,5,6],[-1,0,1],[2,1,2]] and C=[[-1,-2,1], [-1,2,3],[-1,-2,2]] verify that A(B+C)=AB+AC .

If A=[[1,2,3],[-1,0,2],[1,-3,-]], B=[[4,5,6],[-1,0,1],[2,1,2]] and C=[[-1,-2,1],[-1,2,3],[-1,-2,2]] verify that A+(B+C)=(A+B)+C

If A=[[1,2,3] , [-1,0,2] , [-2,-3,1]], B=[[4,5,1] , [-1,0,3] , [2,1,2]], C=[[-1,-2,1] , [-1,2,3] , [-1,-2,2]] then A-2B+3C=

If A=[(1,2,3),(-1,0,2),(1,-8,-1)],B=[(4,5,6),(-1,0,1),(2,1,2)],C=[(-1,-2,1),(-1,2,3),(-1,-2,2)] , find (i) 2B-3C (ii) A-2B+3C .

If A=[[1,0,-2],[3,-1,0],[-2,1,1]],B=[[0,5,-4],[-2,1,3],[-1,0,2]] and C=[[1,5,2],[-1,1,0],[0,-1,1]] verify that A(B-C)=(AB-AC)

If A= [[1,-2,4],[1,2,3] ,[0,1,3]] , B= [[2,-1,5] ,[1,-2,2],[0,2,-4]] and C= [[1,2,3] ,[1,1,2] ,[2 ,0 ,1]] then A+B-C=

If A=[[1,0,5],[3,2,7],[5,4,8]],B=[[3,1,2],[9,0,-6],[7,4,1]],C=[[2,0,-1],[7,5,6],[1,1,4]] , verify that A+(B+C)=(A+B)+C

If A=[[2,3,4],[-3,0,2]], B=[[3,-4,-5],[1,2,1]] and C=[[5,-1,2],[7,0,3]] , find the matrix X such that 2A+3B=X+C

If A=[[x,2,3],[-1,5,3]] , B=[[1,-2,y],[1,z,-2]] and C=[[3,0,1],[0,2,1]] , also A+B-C=O then find x,y,z

MODERN PUBLICATION-MATRICES-Exercise 3 (e ) Long Answer Type Questions (I)
  1. Show that A-A^(T) is skew - cymmetric matrix, where A^(T) denotes the ...

    Text Solution

    |

  2. Show that A-A^(T) is skew - cymmetric matrix, where A^(T) denotes the ...

    Text Solution

    |

  3. If A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,5,6],[-1,0,1],[2,1,2]], C=[[-1...

    Text Solution

    |

  4. If (i) A=[cosalphasinalpha-sinalphacosalpha] , then verify that Aprime...

    Text Solution

    |

  5. If A=[(sinalpha,cosalpha),(-cosalpha,sinalpha)], the prove that A'A=I.

    Text Solution

    |

  6. A=[(-1,3,0),(-7,2,8)],B=[(-5,0),(0,3),(1,-8)]. then AB

    Text Solution

    |

  7. A=[(3,4),(4,5)],B=[(5,3),(2,1)] then AB is ?.

    Text Solution

    |

  8. If A=[(5,-1),(6,7)],B=[(2,1),(3,4)] and C=[(1,3),(-1,4)], verify the f...

    Text Solution

    |

  9. Let A be a square matrix. Then prove that A A^(T) and A^(T) A are symm...

    Text Solution

    |

  10. Verify that : A+A' is a Symmetric Matrix.

    Text Solution

    |

  11. Verify that : A-A' is Skew - symmetric Matrix when : (i) A=[(1,5),(6...

    Text Solution

    |

  12. for the matrix A=[{:(1,5),(6,7):}], verify that : (I) (A+A') is a sy...

    Text Solution

    |

  13. for the matrix A=[{:(1,5),(6,7):}], verify that : (I) (A+A') is a sy...

    Text Solution

    |

  14. If A=[(3,1,-1),(0,1,2)], then show that A A' is a symmetric matrix.

    Text Solution

    |

  15. If A=[[0,a,b],[-a,0,c],[-b,-c,0]], find 1/2 (A+A\') and 1/2 (A-AA\')

    Text Solution

    |

  16. Express the matrix [{:(2,3,1),(1,-1,2),(4,1,2):}] as the sum of a symm...

    Text Solution

    |

  17. Express [(3,-4),(1,-1)] as the sum of symmetric and skew-symmetric ma...

    Text Solution

    |

  18. Prove that diagonal elements of a skew symmetric matrix are all zeroes...

    Text Solution

    |

  19. Show that the matrix B^TA B is symmetric or skew-symmetric according a...

    Text Solution

    |

  20. Let A and B be symmetric matrices of the same order. Then show that : ...

    Text Solution

    |