Home
Class 12
MATHS
If A=[(3,1,-1),(0,1,2)], then show that ...

If `A=[(3,1,-1),(0,1,2)]`, then show that `A A'` is a symmetric matrix.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Long Answer Type Questions (II)|9 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (f) Short Answer Type Questions|15 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Short Answer Type Questions|16 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[[3m,-4],[1,-1]] , show that (A-A^T) is skew symmetric matrix, where A^T is the transpose of matrix A.

If A=[3-41-1], show that A-A^(T) is a skew symmetric matrix.

If A=[[3,4],[5,1]] , show that A-A^T is a skew symmetric matrix, where A^T denotes the transpose of matrix A

for the matrix A=[{:(1,5),(6,7):}], verify that : (I) (A+A') is a symmetric matrix. (ii) (A-A') is a skew symmetric matrix.

If A=[[3,-47,8]], show that A-A^(T) is a skew symmetric matrix where A^(T)1 s the transpose of matrix A

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

Show that the matrix, A=[(0,1,-1),(-1,0,1),(1,-1,0)] is a skew - symmetric matrix.

If A=[[4,1],[5,8]] , show that A+A^T is symmetric matrix, where A^T denotes the transpose of matrix A

Matrices of order 33 are formed by using the elements of the set A={-3,-2,-1,0,1,2,3} then probability that matrix is either symmetric or skew symmetric is

If matrix A=[(0,1,-1),(4,-3,4),(3,-3,4)]=B+C , where B is symmetric matrix and C is skew-symmetric matrix, then find matrices B and C.

MODERN PUBLICATION-MATRICES-Exercise 3 (e ) Long Answer Type Questions (I)
  1. If A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,5,6],[-1,0,1],[2,1,2]], C=[[-1...

    Text Solution

    |

  2. If (i) A=[cosalphasinalpha-sinalphacosalpha] , then verify that Aprime...

    Text Solution

    |

  3. If A=[(sinalpha,cosalpha),(-cosalpha,sinalpha)], the prove that A'A=I.

    Text Solution

    |

  4. A=[(-1,3,0),(-7,2,8)],B=[(-5,0),(0,3),(1,-8)]. then AB

    Text Solution

    |

  5. A=[(3,4),(4,5)],B=[(5,3),(2,1)] then AB is ?.

    Text Solution

    |

  6. If A=[(5,-1),(6,7)],B=[(2,1),(3,4)] and C=[(1,3),(-1,4)], verify the f...

    Text Solution

    |

  7. Let A be a square matrix. Then prove that A A^(T) and A^(T) A are symm...

    Text Solution

    |

  8. Verify that : A+A' is a Symmetric Matrix.

    Text Solution

    |

  9. Verify that : A-A' is Skew - symmetric Matrix when : (i) A=[(1,5),(6...

    Text Solution

    |

  10. for the matrix A=[{:(1,5),(6,7):}], verify that : (I) (A+A') is a sy...

    Text Solution

    |

  11. for the matrix A=[{:(1,5),(6,7):}], verify that : (I) (A+A') is a sy...

    Text Solution

    |

  12. If A=[(3,1,-1),(0,1,2)], then show that A A' is a symmetric matrix.

    Text Solution

    |

  13. If A=[[0,a,b],[-a,0,c],[-b,-c,0]], find 1/2 (A+A\') and 1/2 (A-AA\')

    Text Solution

    |

  14. Express the matrix [{:(2,3,1),(1,-1,2),(4,1,2):}] as the sum of a symm...

    Text Solution

    |

  15. Express [(3,-4),(1,-1)] as the sum of symmetric and skew-symmetric ma...

    Text Solution

    |

  16. Prove that diagonal elements of a skew symmetric matrix are all zeroes...

    Text Solution

    |

  17. Show that the matrix B^TA B is symmetric or skew-symmetric according a...

    Text Solution

    |

  18. Let A and B be symmetric matrices of the same order. Then show that : ...

    Text Solution

    |

  19. Let A and B be symmetric matrices of the same order. Then show that : ...

    Text Solution

    |

  20. If A and B are symmetric matrices of the same order, show that AB+BA i...

    Text Solution

    |