Home
Class 12
MATHS
Express [(3,-4),(1,-1)] as the sum of s...

Express `[(3,-4),(1,-1)]` as the sum of symmetric and skew-symmetric matrices.

Text Solution

AI Generated Solution

The correct Answer is:
To express the matrix \(\begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}\) as the sum of a symmetric matrix and a skew-symmetric matrix, we can follow these steps: ### Step 1: Define the Matrix Let \( A = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \). ### Step 2: Find the Symmetric and Skew-Symmetric Parts We can express \( A \) as the sum of a symmetric matrix \( S \) and a skew-symmetric matrix \( K \): \[ A = S + K \] Where: - The symmetric part \( S \) is given by: \[ S = \frac{1}{2}(A + A^T) \] - The skew-symmetric part \( K \) is given by: \[ K = \frac{1}{2}(A - A^T) \] ### Step 3: Calculate the Transpose of A First, we need to find the transpose of \( A \): \[ A^T = \begin{pmatrix} 3 & 1 \\ -4 & -1 \end{pmatrix} \] ### Step 4: Calculate the Symmetric Part S Now, we can calculate \( S \): \[ S = \frac{1}{2}\left(A + A^T\right) = \frac{1}{2}\left(\begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} + \begin{pmatrix} 3 & 1 \\ -4 & -1 \end{pmatrix}\right) \] Calculating the sum: \[ A + A^T = \begin{pmatrix} 3 + 3 & -4 + 1 \\ 1 - 4 & -1 - 1 \end{pmatrix} = \begin{pmatrix} 6 & -3 \\ -3 & -2 \end{pmatrix} \] Now, divide by 2: \[ S = \frac{1}{2}\begin{pmatrix} 6 & -3 \\ -3 & -2 \end{pmatrix} = \begin{pmatrix} 3 & -\frac{3}{2} \\ -\frac{3}{2} & -1 \end{pmatrix} \] ### Step 5: Calculate the Skew-Symmetric Part K Now, we can calculate \( K \): \[ K = \frac{1}{2}\left(A - A^T\right) = \frac{1}{2}\left(\begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} - \begin{pmatrix} 3 & 1 \\ -4 & -1 \end{pmatrix}\right) \] Calculating the difference: \[ A - A^T = \begin{pmatrix} 3 - 3 & -4 - 1 \\ 1 + 4 & -1 + 1 \end{pmatrix} = \begin{pmatrix} 0 & -5 \\ 5 & 0 \end{pmatrix} \] Now, divide by 2: \[ K = \frac{1}{2}\begin{pmatrix} 0 & -5 \\ 5 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{5}{2} \\ \frac{5}{2} & 0 \end{pmatrix} \] ### Step 6: Write the Final Result Thus, we can express the original matrix \( A \) as: \[ A = S + K = \begin{pmatrix} 3 & -\frac{3}{2} \\ -\frac{3}{2} & -1 \end{pmatrix} + \begin{pmatrix} 0 & -\frac{5}{2} \\ \frac{5}{2} & 0 \end{pmatrix} \] ### Summary The symmetric matrix \( S \) is: \[ S = \begin{pmatrix} 3 & -\frac{3}{2} \\ -\frac{3}{2} & -1 \end{pmatrix} \] The skew-symmetric matrix \( K \) is: \[ K = \begin{pmatrix} 0 & -\frac{5}{2} \\ \frac{5}{2} & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Long Answer Type Questions (II)|9 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (f) Short Answer Type Questions|15 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Short Answer Type Questions|16 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Express the matrix A=[{:(3,-4),(1,-1):}] as the sum of a symmetric matrix and a skew-symmetric matrix.

Express the matrix A=[3-41-1] as the sum of a symmetric and a skew-symmetric matrix.

Express the following as the sum of symmetric and skew - symmetric matrices : [(1,3,1),(1,3,2),(5,-4,5)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(3,3,-1),(0,-2,1),(-4,-5,2)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(1,2,3),(3,4,5),(5,6,7)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(2,-4,5),(1,8,-2),(7,3,9)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(1,2,-3),(7,0,5),(-4,8,9)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(6,-2,2),(-2,3,-1),(2,-1,3)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(2,5,-1),(3,1,5),(7,6,9)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(3,2,3),(4,5,3),(2,4,5)]

MODERN PUBLICATION-MATRICES-Exercise 3 (e ) Long Answer Type Questions (I)
  1. If A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,5,6],[-1,0,1],[2,1,2]], C=[[-1...

    Text Solution

    |

  2. If (i) A=[cosalphasinalpha-sinalphacosalpha] , then verify that Aprime...

    Text Solution

    |

  3. If A=[(sinalpha,cosalpha),(-cosalpha,sinalpha)], the prove that A'A=I.

    Text Solution

    |

  4. A=[(-1,3,0),(-7,2,8)],B=[(-5,0),(0,3),(1,-8)]. then AB

    Text Solution

    |

  5. A=[(3,4),(4,5)],B=[(5,3),(2,1)] then AB is ?.

    Text Solution

    |

  6. If A=[(5,-1),(6,7)],B=[(2,1),(3,4)] and C=[(1,3),(-1,4)], verify the f...

    Text Solution

    |

  7. Let A be a square matrix. Then prove that A A^(T) and A^(T) A are symm...

    Text Solution

    |

  8. Verify that : A+A' is a Symmetric Matrix.

    Text Solution

    |

  9. Verify that : A-A' is Skew - symmetric Matrix when : (i) A=[(1,5),(6...

    Text Solution

    |

  10. for the matrix A=[{:(1,5),(6,7):}], verify that : (I) (A+A') is a sy...

    Text Solution

    |

  11. for the matrix A=[{:(1,5),(6,7):}], verify that : (I) (A+A') is a sy...

    Text Solution

    |

  12. If A=[(3,1,-1),(0,1,2)], then show that A A' is a symmetric matrix.

    Text Solution

    |

  13. If A=[[0,a,b],[-a,0,c],[-b,-c,0]], find 1/2 (A+A\') and 1/2 (A-AA\')

    Text Solution

    |

  14. Express the matrix [{:(2,3,1),(1,-1,2),(4,1,2):}] as the sum of a symm...

    Text Solution

    |

  15. Express [(3,-4),(1,-1)] as the sum of symmetric and skew-symmetric ma...

    Text Solution

    |

  16. Prove that diagonal elements of a skew symmetric matrix are all zeroes...

    Text Solution

    |

  17. Show that the matrix B^TA B is symmetric or skew-symmetric according a...

    Text Solution

    |

  18. Let A and B be symmetric matrices of the same order. Then show that : ...

    Text Solution

    |

  19. Let A and B be symmetric matrices of the same order. Then show that : ...

    Text Solution

    |

  20. If A and B are symmetric matrices of the same order, show that AB+BA i...

    Text Solution

    |