Home
Class 12
MATHS
Express the following as the sum of symm...

Express the following as the sum of symmetric and skew - symmetric matrices :
`[(2,-4,5),(1,8,-2),(7,3,9)]`

Text Solution

AI Generated Solution

The correct Answer is:
To express the matrix \( A = \begin{pmatrix} 2 & -4 & 5 \\ 1 & 8 & -2 \\ 7 & 3 & 9 \end{pmatrix} \) as the sum of a symmetric matrix \( P \) and a skew-symmetric matrix \( Q \), we can use the following formulas: 1. The symmetric matrix \( P \) is given by: \[ P = \frac{1}{2}(A + A^T) \] 2. The skew-symmetric matrix \( Q \) is given by: \[ Q = \frac{1}{2}(A - A^T) \] ### Step 1: Calculate the transpose of matrix \( A \) The transpose of matrix \( A \) is obtained by swapping rows with columns: \[ A^T = \begin{pmatrix} 2 & 1 & 7 \\ -4 & 8 & 3 \\ 5 & -2 & 9 \end{pmatrix} \] ### Step 2: Calculate the symmetric matrix \( P \) Now, substitute \( A \) and \( A^T \) into the formula for \( P \): \[ P = \frac{1}{2} \left( A + A^T \right) = \frac{1}{2} \left( \begin{pmatrix} 2 & -4 & 5 \\ 1 & 8 & -2 \\ 7 & 3 & 9 \end{pmatrix} + \begin{pmatrix} 2 & 1 & 7 \\ -4 & 8 & 3 \\ 5 & -2 & 9 \end{pmatrix} \right) \] Calculating \( A + A^T \): \[ A + A^T = \begin{pmatrix} 2 + 2 & -4 + 1 & 5 + 7 \\ 1 - 4 & 8 + 8 & -2 + 3 \\ 7 + 5 & 3 - 2 & 9 + 9 \end{pmatrix} = \begin{pmatrix} 4 & -3 & 12 \\ -3 & 16 & 1 \\ 12 & 1 & 18 \end{pmatrix} \] Now, divide by 2: \[ P = \frac{1}{2} \begin{pmatrix} 4 & -3 & 12 \\ -3 & 16 & 1 \\ 12 & 1 & 18 \end{pmatrix} = \begin{pmatrix} 2 & -\frac{3}{2} & 6 \\ -\frac{3}{2} & 8 & \frac{1}{2} \\ 6 & \frac{1}{2} & 9 \end{pmatrix} \] ### Step 3: Calculate the skew-symmetric matrix \( Q \) Now, substitute \( A \) and \( A^T \) into the formula for \( Q \): \[ Q = \frac{1}{2} \left( A - A^T \right) = \frac{1}{2} \left( \begin{pmatrix} 2 & -4 & 5 \\ 1 & 8 & -2 \\ 7 & 3 & 9 \end{pmatrix} - \begin{pmatrix} 2 & 1 & 7 \\ -4 & 8 & 3 \\ 5 & -2 & 9 \end{pmatrix} \right) \] Calculating \( A - A^T \): \[ A - A^T = \begin{pmatrix} 2 - 2 & -4 - 1 & 5 - 7 \\ 1 + 4 & 8 - 8 & -2 - 3 \\ 7 - 5 & 3 + 2 & 9 - 9 \end{pmatrix} = \begin{pmatrix} 0 & -5 & -2 \\ 5 & 0 & -5 \\ 2 & 5 & 0 \end{pmatrix} \] Now, divide by 2: \[ Q = \frac{1}{2} \begin{pmatrix} 0 & -5 & -2 \\ 5 & 0 & -5 \\ 2 & 5 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{5}{2} & -1 \\ \frac{5}{2} & 0 & -\frac{5}{2} \\ 1 & \frac{5}{2} & 0 \end{pmatrix} \] ### Final Result Thus, we can express the matrix \( A \) as: \[ A = P + Q \] Where: \[ P = \begin{pmatrix} 2 & -\frac{3}{2} & 6 \\ -\frac{3}{2} & 8 & \frac{1}{2} \\ 6 & \frac{1}{2} & 9 \end{pmatrix} \quad \text{(symmetric)} \] \[ Q = \begin{pmatrix} 0 & -\frac{5}{2} & -1 \\ \frac{5}{2} & 0 & -\frac{5}{2} \\ 1 & \frac{5}{2} & 0 \end{pmatrix} \quad \text{(skew-symmetric)} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (f) Short Answer Type Questions|15 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (f) Long Answer Type Questions (I)|10 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Long Answer Type Questions (I)|27 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Express the following as the sum of symmetric and skew - symmetric matrices : [(1,2,-3),(7,0,5),(-4,8,9)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(2,5,-1),(3,1,5),(7,6,9)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(1,3,1),(1,3,2),(5,-4,5)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(6,-2,2),(-2,3,-1),(2,-1,3)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(3,3,-1),(0,-2,1),(-4,-5,2)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(1,2,3),(3,4,5),(5,6,7)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(3,2,3),(4,5,3),(2,4,5)]

Express the following matrilx as the sum of a symmetric and skey symmetric matrix [(1,2,4),(6,8,1),(3,5,7)]

express the following matrices as a sum of symmetric and skew symmetric matrices : (i) [{:(3,-7),(4,2):}]

Express [(3,-4),(1,-1)] as the sum of symmetric and skew-symmetric matrices.