Home
Class 12
MATHS
Express the following as the sum of symm...

Express the following as the sum of symmetric and skew - symmetric matrices :
`[(1,2,3),(3,4,5),(5,6,7)]`

Text Solution

AI Generated Solution

The correct Answer is:
To express the matrix \( A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{pmatrix} \) as the sum of a symmetric matrix and a skew-symmetric matrix, we can follow these steps: ### Step 1: Find the transpose of the matrix \( A \) First, we need to calculate the transpose of matrix \( A \). \[ A^T = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{pmatrix} \] **Hint:** The transpose of a matrix is obtained by swapping its rows and columns. ### Step 2: Calculate the symmetric matrix \( P \) The symmetric part \( P \) of the matrix \( A \) can be calculated using the formula: \[ P = \frac{1}{2}(A + A^T) \] Substituting the values of \( A \) and \( A^T \): \[ P = \frac{1}{2} \left( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{pmatrix} + \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{pmatrix} \right) \] Calculating the sum inside the parentheses: \[ A + A^T = \begin{pmatrix} 1+1 & 2+3 & 3+5 \\ 3+2 & 4+4 & 5+6 \\ 5+3 & 6+5 & 7+7 \end{pmatrix} = \begin{pmatrix} 2 & 5 & 8 \\ 5 & 8 & 11 \\ 8 & 11 & 14 \end{pmatrix} \] Now, divide by 2: \[ P = \frac{1}{2} \begin{pmatrix} 2 & 5 & 8 \\ 5 & 8 & 11 \\ 8 & 11 & 14 \end{pmatrix} = \begin{pmatrix} 1 & \frac{5}{2} & 4 \\ \frac{5}{2} & 4 & \frac{11}{2} \\ 4 & \frac{11}{2} & 7 \end{pmatrix} \] **Hint:** The symmetric matrix \( P \) is obtained by averaging the original matrix and its transpose. ### Step 3: Calculate the skew-symmetric matrix \( Q \) The skew-symmetric part \( Q \) of the matrix \( A \) can be calculated using the formula: \[ Q = \frac{1}{2}(A - A^T) \] Substituting the values of \( A \) and \( A^T \): \[ Q = \frac{1}{2} \left( \begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{pmatrix} - \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 3 & 5 & 7 \end{pmatrix} \right) \] Calculating the difference inside the parentheses: \[ A - A^T = \begin{pmatrix} 1-1 & 2-3 & 3-5 \\ 3-2 & 4-4 & 5-6 \\ 5-3 & 6-5 & 7-7 \end{pmatrix} = \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix} \] Now, divide by 2: \[ Q = \frac{1}{2} \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\frac{1}{2} & -1 \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ 1 & \frac{1}{2} & 0 \end{pmatrix} \] **Hint:** The skew-symmetric matrix \( Q \) is obtained by averaging the difference between the original matrix and its transpose. ### Step 4: Verify the results Now, we can verify that \( A = P + Q \): \[ P + Q = \begin{pmatrix} 1 & \frac{5}{2} & 4 \\ \frac{5}{2} & 4 & \frac{11}{2} \\ 4 & \frac{11}{2} & 7 \end{pmatrix} + \begin{pmatrix} 0 & -\frac{1}{2} & -1 \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ 1 & \frac{1}{2} & 0 \end{pmatrix} \] Calculating the sum: \[ = \begin{pmatrix} 1 + 0 & \frac{5}{2} - \frac{1}{2} & 4 - 1 \\ \frac{5}{2} + \frac{1}{2} & 4 + 0 & \frac{11}{2} - \frac{1}{2} \\ 4 + 1 & \frac{11}{2} + \frac{1}{2} & 7 + 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{pmatrix} \] Thus, we have confirmed that \( A = P + Q \). ### Final Answer The matrix \( A \) can be expressed as: \[ A = P + Q \] where \[ P = \begin{pmatrix} 1 & \frac{5}{2} & 4 \\ \frac{5}{2} & 4 & \frac{11}{2} \\ 4 & \frac{11}{2} & 7 \end{pmatrix} \text{ (symmetric)} \] and \[ Q = \begin{pmatrix} 0 & -\frac{1}{2} & -1 \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ 1 & \frac{1}{2} & 0 \end{pmatrix} \text{ (skew-symmetric)} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (f) Short Answer Type Questions|15 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (f) Long Answer Type Questions (I)|10 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Long Answer Type Questions (I)|27 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Express the following as the sum of symmetric and skew - symmetric matrices : [(1,2,-3),(7,0,5),(-4,8,9)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(2,5,-1),(3,1,5),(7,6,9)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(3,2,3),(4,5,3),(2,4,5)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(1,3,1),(1,3,2),(5,-4,5)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(2,-4,5),(1,8,-2),(7,3,9)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(6,-2,2),(-2,3,-1),(2,-1,3)]

Express the following as the sum of symmetric and skew - symmetric matrices : [(3,3,-1),(0,-2,1),(-4,-5,2)]

Express the following matrilx as the sum of a symmetric and skey symmetric matrix [(1,2,4),(6,8,1),(3,5,7)]

Express the following matrix as a sum of symmetric and skew-symmetric matrices.[[1,3,5-6,8,3-4,6,5]]

Express [(3,-4),(1,-1)] as the sum of symmetric and skew-symmetric matrices.