Home
Class 12
MATHS
Find the inverse of the following , if i...

Find the inverse of the following , if it exists, by using elementary row (column) transformations :
`[(4,5),(3,4)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 4 & 5 \\ 3 & 4 \end{pmatrix} \) using elementary row transformations, we will augment the matrix with the identity matrix and perform row operations until we obtain the identity matrix on the left side. ### Step-by-Step Solution: 1. **Set up the augmented matrix**: \[ \left( \begin{array}{cc|cc} 4 & 5 & 1 & 0 \\ 3 & 4 & 0 & 1 \end{array} \right) \] 2. **Make the leading coefficient of the first row equal to 1**: We can do this by dividing the first row by 4: \[ R_1 \leftarrow \frac{1}{4} R_1 \] This gives: \[ \left( \begin{array}{cc|cc} 1 & \frac{5}{4} & \frac{1}{4} & 0 \\ 3 & 4 & 0 & 1 \end{array} \right) \] 3. **Eliminate the first entry of the second row**: We can eliminate the 3 in the second row by performing: \[ R_2 \leftarrow R_2 - 3R_1 \] This results in: \[ \left( \begin{array}{cc|cc} 1 & \frac{5}{4} & \frac{1}{4} & 0 \\ 0 & -\frac{1}{4} & -\frac{3}{4} & 1 \end{array} \right) \] 4. **Make the leading coefficient of the second row equal to 1**: We can do this by multiplying the second row by -4: \[ R_2 \leftarrow -4R_2 \] This gives: \[ \left( \begin{array}{cc|cc} 1 & \frac{5}{4} & \frac{1}{4} & 0 \\ 0 & 1 & 3 & -4 \end{array} \right) \] 5. **Eliminate the second entry of the first row**: We can eliminate the \(\frac{5}{4}\) in the first row by performing: \[ R_1 \leftarrow R_1 - \frac{5}{4}R_2 \] This results in: \[ \left( \begin{array}{cc|cc} 1 & 0 & -\frac{5}{4} & 5 \\ 0 & 1 & 3 & -4 \end{array} \right) \] 6. **Final form**: The left side is now the identity matrix, and the right side gives us the inverse: \[ A^{-1} = \begin{pmatrix} -\frac{5}{4} & 5 \\ 3 & -4 \end{pmatrix} \] ### Final Answer: The inverse of the matrix \( A = \begin{pmatrix} 4 & 5 \\ 3 & 4 \end{pmatrix} \) is: \[ A^{-1} = \begin{pmatrix} -\frac{5}{4} & 5 \\ 3 & -4 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (f) Long Answer Type Questions (I)|10 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (f) Long Answer Type Questions (II)|1 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Long Answer Type Questions (II)|9 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(-4,3),(-5,4)]

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(2,1),(7,4)]

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(-5,4),(-6,5)]

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(3,-1),(-4,2)]

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(2,-3),(-1,2)]

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(3,10),(2,7)]

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(6,-3),(-2,1)]