Home
Class 12
MATHS
Find the inverse of the following , if i...

Find the inverse of the following , if it exists, by using elementary row (column) transformations :
`[(-5,4),(-6,5)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} -5 & 4 \\ -6 & 5 \end{pmatrix} \) using elementary row transformations, we follow these steps: ### Step 1: Set up the augmented matrix We start with the matrix \( A \) and augment it with the identity matrix \( I \): \[ \begin{pmatrix} -5 & 4 & | & 1 & 0 \\ -6 & 5 & | & 0 & 1 \end{pmatrix} \] ### Step 2: Make the leading coefficient of the first row 1 To make the leading coefficient of the first row equal to 1, we can multiply the first row by \(-\frac{1}{5}\): \[ R_1 \leftarrow -\frac{1}{5} R_1 \] This gives us: \[ \begin{pmatrix} 1 & -\frac{4}{5} & | & -\frac{1}{5} & 0 \\ -6 & 5 & | & 0 & 1 \end{pmatrix} \] ### Step 3: Eliminate the first column of the second row Next, we want to eliminate the \(-6\) in the first column of the second row. We can do this by adding \(6\) times the first row to the second row: \[ R_2 \leftarrow R_2 + 6R_1 \] Calculating this gives: \[ R_2 = (-6 + 6 \cdot 1, 5 + 6 \cdot -\frac{4}{5}, 0 + 6 \cdot -\frac{1}{5}, 1 + 6 \cdot 0) \] \[ R_2 = (0, 5 - \frac{24}{5}, -\frac{6}{5}, 1) \] This simplifies to: \[ R_2 = (0, \frac{1}{5}, -\frac{6}{5}, 1) \] So our augmented matrix now looks like: \[ \begin{pmatrix} 1 & -\frac{4}{5} & | & -\frac{1}{5} & 0 \\ 0 & 1 & | & -\frac{6}{5} & 1 \end{pmatrix} \] ### Step 4: Make the leading coefficient of the second row 1 The second row already has a leading coefficient of 1, so we can proceed to eliminate the \(-\frac{4}{5}\) in the first row's second column. We do this by adding \(\frac{4}{5}\) times the second row to the first row: \[ R_1 \leftarrow R_1 + \frac{4}{5}R_2 \] Calculating this gives: \[ R_1 = (1 + 0, -\frac{4}{5} + \frac{4}{5} \cdot 1, -\frac{1}{5} + \frac{4}{5} \cdot -\frac{6}{5}, 0 + \frac{4}{5} \cdot 1) \] This simplifies to: \[ R_1 = (1, 0, -\frac{1}{5} - \frac{24}{25}, \frac{4}{5}) \] \[ R_1 = (1, 0, -\frac{25}{25}, \frac{4}{5}) = (1, 0, -1, \frac{4}{5}) \] So our augmented matrix now looks like: \[ \begin{pmatrix} 1 & 0 & | & -1 & \frac{4}{5} \\ 0 & 1 & | & -\frac{6}{5} & 1 \end{pmatrix} \] ### Step 5: Write the inverse From the augmented matrix, we can read off the inverse of \( A \): \[ A^{-1} = \begin{pmatrix} -1 & \frac{4}{5} \\ -\frac{6}{5} & 1 \end{pmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} -1 & \frac{4}{5} \\ -\frac{6}{5} & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (f) Long Answer Type Questions (I)|10 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (f) Long Answer Type Questions (II)|1 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (e ) Long Answer Type Questions (II)|9 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(-4,3),(-5,4)]

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(4,5),(3,4)]

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(6,-3),(-2,1)]

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(3,-1),(-4,2)]

Find the inverse of the following , if it exists, by using elementary row (column) transformations : [(2,1),(7,4)]