Home
Class 12
MATHS
If matrix A=[a(ij)](2xx2^(,)) where a(ij...

If matrix `A=[a_(ij)]_(2xx2^(,))` where `a_(ij)=1" if "i!=j`
`=0" if "i=j` then `A^(2)` is equal to :

A

I

B

A

C

O

D

None of these.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( A^2 \) for the given matrix \( A \) defined as follows: 1. **Matrix Definition**: The matrix \( A \) is a \( 2 \times 2 \) matrix where: - \( a_{ij} = 1 \) if \( i \neq j \) - \( a_{ij} = 0 \) if \( i = j \) 2. **Constructing Matrix \( A \)**: - For a \( 2 \times 2 \) matrix, we have: \[ A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \] - Since \( a_{11} = 0 \) (because \( i = j \)), \( a_{22} = 0 \) (because \( i = j \)), \( a_{12} = 1 \) (because \( i \neq j \)), and \( a_{21} = 1 \) (because \( i \neq j \)), we can write: \[ A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \] 3. **Calculating \( A^2 \)**: - To find \( A^2 \), we compute \( A \times A \): \[ A^2 = A \times A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \] 4. **Matrix Multiplication**: - We perform the multiplication step-by-step: - First row, first column: \[ 0 \times 0 + 1 \times 1 = 0 + 1 = 1 \] - First row, second column: \[ 0 \times 1 + 1 \times 0 = 0 + 0 = 0 \] - Second row, first column: \[ 1 \times 0 + 0 \times 1 = 0 + 0 = 0 \] - Second row, second column: \[ 1 \times 1 + 0 \times 0 = 1 + 0 = 1 \] 5. **Resulting Matrix**: - Combining these results, we have: \[ A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] - This is the identity matrix \( I \). 6. **Conclusion**: - Therefore, \( A^2 = I \). ### Final Answer: \[ A^2 = I \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Objective Type Questions (B. Fill in the Blanks)|10 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|4 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise 3 (f) Long Answer Type Questions (II)|1 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If matrix A=([a_(ij)])_(2xx2), where a_(ij)={1,quad if quad i!=j0,quad if i+j, then A^(2) is equal to I( b) A(c)O(d)I

Construct a matrix [a_(ij)]_(2xx2) where a_(ij)=i+2j

If A=[a_(ij)]_(2xx2)" where "a_(ij)=2i+j," then :"A=

if A=[a_(ij)]_(2*2) where a_(ij)={i+j,i!=j and a_(ij)=i^(2)-2j,i=j then A^(-1) is equal to

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

If matrix A=[a_(ij)]_(2X2') where a_(ij)={[1,i!=j0,i=j]}, then A^(2) is equal to

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j

MODERN PUBLICATION-MATRICES-Objective Type Questions (A. Multiple Choice Questions)
  1. If A=[alphabetagammaalpha]is such that A^2-I, then(A) 1+alpha^2+betag...

    Text Solution

    |

  2. If a matrix A is both symmetric and skew-symmetric, then A is a dia...

    Text Solution

    |

  3. If A is a square matrix such that A^2=A ,t h e n(I+A)^3-7A is equal to...

    Text Solution

    |

  4. The matrix A=[(0,0,5),(0,5,0),(5,0,0)] is a :

    Text Solution

    |

  5. If matrix A=[a(ij)](2xx2^(,)) where a(ij)=1" if "i!=j =0" if "i=j th...

    Text Solution

    |

  6. If A=1/pi[sin^(-1)(pix)tan^(-1)(x/pi)sin^(-1)(x/pi)cot^(-1)(pix)] and ...

    Text Solution

    |

  7. If A is a matrix of order mxxn and B is a matrix such that A B^T and B...

    Text Solution

    |

  8. For any two matrices A and B , we have

    Text Solution

    |

  9. Suppose P and Q are two different matrices of order 3xx n and n xx p,...

    Text Solution

    |

  10. If A=[(cosalpha,-sinalpha),(sinalpha,cosalpha)], then A+A'=I, if the v...

    Text Solution

    |

  11. If a matrix A is both symmetric and skew-symmetric, then A is a dia...

    Text Solution

    |

  12. For any square matrix A,(A-A') is :

    Text Solution

    |

  13. If A,B are symmetric matrices of same order, then AB-BA is a :

    Text Solution

    |

  14. If A=[(4,2,3),(1,5,7)] and B=[(1,3,7),(0,4,1)], then 2A+B is :

    Text Solution

    |

  15. If order of matrix A is 2xx3 and order of matrix B is 3xx5, then order...

    Text Solution

    |

  16. If A and B are invertible matrices of the same order, then (AB)^(-1) i...

    Text Solution

    |

  17. If the matrices [(3x+7,5),(y+1,2-3x)]=[(5,y-2),(8,4)], then the values...

    Text Solution

    |

  18. Let A=[(0,2),(0,3)] and B=[(2,3),(0,0)], then AB equals :

    Text Solution

    |

  19. If A is square matrix such that |A| ne 0 and A^2-A+2I=O " then " A^(-1...

    Text Solution

    |

  20. The value of 'k' such that the matrix ((1,k),(-k,1)) is symmetric is :

    Text Solution

    |