Home
Class 12
MATHS
Compute the indicated products (i) [(...

Compute the indicated products
(i) `[(a,b),(-b,a)][(a,-b),(b,a)]`
(ii) `[(1),(2),(3)]["2 3 4"]`
(iii) `[(1,-2),(2,3)][(1,2,3),(2,3,1)]`
(iv) `[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given matrix products step by step. ### (i) Compute the product of matrices `[(a,b),(-b,a)]` and `[(a,-b),(b,a)]`. Let: \[ A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \] \[ B = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \] The product \( AB \) is calculated as follows: \[ AB = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \] Calculating each element of the resulting matrix: 1. First row, first column: \[ a \cdot a + b \cdot b = a^2 + b^2 \] 2. First row, second column: \[ a \cdot (-b) + b \cdot a = -ab + ab = 0 \] 3. Second row, first column: \[ -b \cdot a + a \cdot b = -ab + ab = 0 \] 4. Second row, second column: \[ -b \cdot (-b) + a \cdot a = b^2 + a^2 \] Thus, the resulting product is: \[ AB = \begin{pmatrix} a^2 + b^2 & 0 \\ 0 & a^2 + b^2 \end{pmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 3.2) Choose the correct answer|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 3.3)|10 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 3.1)|10 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Find the product of [(a,b),(-b,a)][(a,-b),(b,a)]

compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,a):}](ii) [{:(1),(2),(3):}][2" "3 " "4 ] (iii) [{:(1,-2),(2,3):}][{:(1,2,3),(2,3,1):}] (iv)[{:(2,3,4),(3,4,5),(4,5,6):}][{:(1,-3,5),(0,2,4),(3,0,5):}] (V) [{:(2,1),(3,2),(-1,1):}][{:(1,0,1),(-1,2,1):}] (vi) [{:(3,-1,3),(-1,0,2):}][{:(2,-3),(1,0),(3,1):}]

Compute the indicated products.(i) [[a, b],[-b ,a]][[a,-b],[b, a]] (ii) [[1],[ 2],[ 3]][[2, 3 ,4]] (iii) [[1,-2],[ 2 ,3]] [[1 ,2, 3],[ 2, 3 ,1]] (iv) [[2, 3 ,4 ],[3, 4 ,5],[ 4, 5, 6]][[1,-3, 5],[ 0, 2, 4],[ 3, 0, 5]] (v) [[2,1],[3,2],[-1,1]] [[1, 0, 1],[-1, 2 ,1]] (vi) [[3,-1, 3],[1,0,2]] [[2 ,-3],[ 1, 0],[ 3, 1]]

Find the product of [[a,-b],[b,a]]*[[a,b],[-b,a]]

Find the product : (a^(2)+b^(2))(a^(4)+b^(4))(a+b)(a-b) .

Find the following products (i) (a-2b)(a^2+2ab+4b^2) (ii) (7a-5b)(49a^2+35ab+25b^2)

Compute the following: [[a,b],[-b,a]]+[[a,b],[b,a]]

Expand : (i) (4a-5b)^(3) " " (ii) (a+2b)^(3)

The product (B) is : a. b. c d.

In each of the fowllowing cases, find a and b (i) (2a+b,a-b)=(8,3) (ii) ((a)/(4),a-2b)=(0,6+b)