Home
Class 12
MATHS
If A=[(alpha,beta),(gamma,-alpha)] is su...

If `A=[(alpha,beta),(gamma,-alpha)]` is such that `A^(2)=I`, then :

A

`1+alpha^(2)+betagamma=0`

B

`1-alpha^(2)+betagamma=0`

C

`1-alpha^(2)-betagamma=0`

D

`1+alpha^(2)-betagamma=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the elements of the matrix \( A \) given that \( A^2 = I \), where \( I \) is the identity matrix. Given: \[ A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) We need to calculate \( A^2 \) by multiplying \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \cdot \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \] ### Step 2: Perform the multiplication Using the matrix multiplication rules: 1. The element in the first row, first column: \[ \alpha \cdot \alpha + \beta \cdot \gamma = \alpha^2 + \beta \gamma \] 2. The element in the first row, second column: \[ \alpha \cdot \beta + \beta \cdot (-\alpha) = \alpha \beta - \beta \alpha = 0 \] 3. The element in the second row, first column: \[ \gamma \cdot \alpha + (-\alpha) \cdot \gamma = \gamma \alpha - \alpha \gamma = 0 \] 4. The element in the second row, second column: \[ \gamma \cdot \beta + (-\alpha) \cdot (-\alpha) = \gamma \beta + \alpha^2 \] Thus, we have: \[ A^2 = \begin{pmatrix} \alpha^2 + \beta \gamma & 0 \\ 0 & \gamma \beta + \alpha^2 \end{pmatrix} \] ### Step 3: Set \( A^2 \) equal to the identity matrix Since \( A^2 = I \), we have: \[ \begin{pmatrix} \alpha^2 + \beta \gamma & 0 \\ 0 & \gamma \beta + \alpha^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 4: Equate corresponding elements From the equality of the matrices, we get: 1. \( \alpha^2 + \beta \gamma = 1 \) 2. \( \gamma \beta + \alpha^2 = 1 \) Both equations are actually the same, so we can focus on one: \[ \alpha^2 + \beta \gamma = 1 \] ### Step 5: Rearranging the equation Rearranging gives: \[ 1 - \alpha^2 - \beta \gamma = 0 \] ### Conclusion Thus, we find that: \[ 1 - \alpha^2 - \beta \gamma = 0 \] This corresponds to option 3 from the given choices. ### Final Answer The correct option is: \[ 1 - \alpha^2 - \beta \gamma = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise Exercise|7 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Revision Exercise|10 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise NCERT - FILE (Question from NCERT Book) (Exercise 3.4)|14 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[[alpha,betagamma,alpha]] is such that A^(2)=I, then (A)1+alpha^(2)+beta gamma=0(B)1-alpha^(2)+beta gamma,=0(C)1-alpha^(2)-beta gamma,=0(D)1+alpha^(2)-beta gamma=0

Given that A=[(alpha, beta),(gamma, alpha)] and A^(2) =3I , then :

Given that A=[(alpha, beta),(gamma, - alpha)] and A^2 =3 I then :

If alpha,beta,gamma are the roots of the equation x^(3)+qx+r=0 then find the equation whose roots are ( a )alpha+beta,beta+gamma,gamma+alpha(b)alpha beta,beta gamma,gamma alpha

If alpha,beta,gamma are the roots of the equation x^(3)+qx+r=0 then equation whose roots are beta gamma-alpha^(2),gamma alpha-beta^(2),alpha beta-gamma^(2) is

If alpha,beta,gamma are the roots of the equation x^(3)-x+2=0 then the equation whose roots are alpha beta+(1)/(gamma),beta gamma+(1)/(alpha),gamma alpha+(1)/(beta) is

If alpha,beta,gamma are the roots of the equation x^(3)+3x-2=0 then the equation whose roots are alpha(beta+gamma),beta(gamma+alpha),gamma(alpha+beta) is

If direction angles of a line are alpha, beta, gamma such that alpha+beta=90^(@) , then (cos alpha+cos beta+cos gamma)^(2)=

If [(0,2beta,gamma),(alpha,beta,-gamma),(alpha,-beta,gamma)] is orthogonal, then find the value of 2alpha^(2)+6beta^(2)+3gamma^(2).