Home
Class 12
MATHS
If A(x)=(1)/(sqrt(1-x^(2)))[(1,-x),(-x,1...

If `A(x)=(1)/(sqrt(1-x^(2)))[(1,-x),(-x,1)]`, prove that : `A(x)A(y)=A((x+y),(1+xy))`, where `|x|lt1`.
Hence, deduce that `(A(x))^(-1)=A(-x)`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING (True/false)|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING (Fill in the blank)|1 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise|7 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If y=(x sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=x+(y)/(x)

If y=(x sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=x+(y)/(x)

If y=sqrt((1-x)/(1+x)), prove that (1-x^(2))(dy)/(dx)+y=0

if y=(sin^(-1)x)/(sqrt(1-x^(2))), prove that (1-x^(2))(dy)/(dx)=xy+1

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

y=sqrt((x^(2)+x+1)/(x^(2)-x+1))

y=(sqrt(x)+(1)/(sqrt(x)))(1+x+x^(2))

If y=sqrt((1-x)/(1+x)),quad prove that ((1-x^(2))dy)/(dx)+y=0