Home
Class 12
MATHS
If A=[[a,b],[0,1]] then prove that A^n=[...

If `A=[[a,b],[0,1]]` then prove that `A^n=[[a^n,(b(a^n-1))/(a-1)],[0,1]]`

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING (True/false)|2 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING (Fill in the blank)|1 Videos
  • MATRICES

    MODERN PUBLICATION|Exercise Exercise|7 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

If A=[ab01], prove that A^(n)=[a^(n)b((a^(n)-1)/(a-1))01] for every positive integer n.

If A=[[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all n epsilon N

let A=[[1,01,1]] and I=[[1,00,1]] prove that A^(n)=nA-(n-1)I,n>=1

If x=sum_(n=0)^oo a^n, y=sum_(n=0)^oo b^n where |a|<1,|b|<1 then prove that sum_(n=0)^oo (ab)^n=(xy)/(x+y-1)

If n. sin(A+2B)=sinA , then prove that: tan(A+B)=(1+n)/(1-n).tanB

If tan(A+B)=ntan(A_B) then prove that (n+1)/(n-1)=(sin2A)/(sin2B)

If A=[{:(1,1),(0,1):}] , prove that A=[{:(1,n),(0,1):}] for all n inN.

If a>b and n is a positive integer,then prove that a^(n)-b^(n)>n(ab)^((n-1)/2)(a-b)

If A=[(1,2),(0,1)], then A^n= (A) [(1,2n),(0,1)] (B) [(2,n),(0,1)] (C) [(1,2n),(0,-1)] (D) [(1,n),(0,1)]