Home
Class 12
MATHS
By using elementary transformations, fin...

By using elementary transformations, find the inverse of : `A=[(3,1),(5,2)]`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \) using elementary transformations, we will follow these steps: ### Step 1: Set up the augmented matrix We start by creating an augmented matrix that combines \( A \) with the identity matrix \( I \): \[ \left( \begin{array}{cc|cc} 3 & 1 & 1 & 0 \\ 5 & 2 & 0 & 1 \end{array} \right) \] ### Step 2: Apply Row Operation R2 → R2 - R1 We will perform the row operation \( R_2 \rightarrow R_2 - R_1 \): \[ R_2 = R_2 - R_1 \implies \left( \begin{array}{cc|cc} 3 & 1 & 1 & 0 \\ 5 - 3 & 2 - 1 & 0 - 1 & 1 - 0 \end{array} \right) = \left( \begin{array}{cc|cc} 3 & 1 & 1 & 0 \\ 2 & 1 & -1 & 1 \end{array} \right) \] ### Step 3: Apply Row Operation R1 → R1 - R2 Now we will perform the operation \( R_1 \rightarrow R_1 - R_2 \): \[ R_1 = R_1 - R_2 \implies \left( \begin{array}{cc|cc} 3 - 2 & 1 - 1 & 1 - (-1) & 0 - 1 \\ 2 & 1 & -1 & 1 \end{array} \right) = \left( \begin{array}{cc|cc} 1 & 0 & 2 & -1 \\ 2 & 1 & -1 & 1 \end{array} \right) \] ### Step 4: Apply Row Operation R2 → R2 - 2R1 Next, we will perform the operation \( R_2 \rightarrow R_2 - 2R_1 \): \[ R_2 = R_2 - 2R_1 \implies \left( \begin{array}{cc|cc} 1 & 0 & 2 & -1 \\ 2 - 2 \cdot 1 & 1 - 2 \cdot 0 & -1 - 2 \cdot 2 & 1 - 2 \cdot (-1) \end{array} \right) = \left( \begin{array}{cc|cc} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 3 \end{array} \right) \] ### Step 5: The left side is now the identity matrix Now we have the augmented matrix in the form: \[ \left( \begin{array}{cc|cc} 1 & 0 & 2 & -1 \\ 0 & 1 & -5 & 3 \end{array} \right) \] This indicates that the inverse of \( A \) is: \[ A^{-1} = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MODERN PUBLICATION|Exercise COMPETITION FILE (Questions from JEE Main)|8 Videos
  • LINEAR PROGRAMMING

    MODERN PUBLICATION|Exercise Chapter Test|12 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformations, find the inverse of, [(5,2),(2,1)]

using Elementary transformations,find the inverse of [[1,-12,3]]

Using elementary transformations,find the inverse of the matrix

Using elementary transformations find the inverse of the matrix A=[(2,1),(4,7)]

Using elementary transformations,find the inverse of the matrix [[3,15,2]]

Using elementary transformations,find the inverse of the matrix ,[[3,-1-4,2]]

Using elementary transformations,find the inverse of the matrix ,[[2,14,2]]

Using elementary transformation, find the inverse of the matrix A=[(a,b),(c,((1+bc)/a))] .

Using elementary transformations,find the inverse of the matrix ,[[2,-3-1,2]]

Using elementary row transformations, find the inverse of the matrix A=[[1,2,3],[2,5,7],[-2,-4,-5]]