Home
Class 12
MATHS
lim(x rarr oo) ((x + 6)/(x + 1))^(x + 4)...

`lim_(x rarr oo) ((x + 6)/(x + 1))^(x + 4)` is :

A

0

B

1

C

`e^(4)`

D

`e^(5)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(LEVEL - II )|73 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|9 Videos

Similar Questions

Explore conceptually related problems

For x in R, lim_(x rarr oo) ((x - 3)/(x + 2))^(x) is :

lim_(x to oo) ((x + 6)/(x + 1))^(x + 4) , is equal to

lim_(x rarr oo) ((x+a)/(x+b))^(x+b) =

lim_(x rarr oo) (1-2/x)^(x) =

lim_(n rarr oo) 5^(((2x)/(x+3)) =

lim_(x rarr oo)((x)/(1+x))^(x) =

lim_(x rarr oo) (1-4/(x-1))^(3x-1) =

lim_(x rarr 0) (sin(4x)/(5x) )=

For x in R, lim_(x rarr oo) ((x-3)/(x+2))^(x) is equal to :

If lim_(x rarr oo) ((x^(2) + x + 1)/(x + 1)-ax - b)=4 , then :