Home
Class 12
MATHS
lim(x rarr oo) (1)/(n^(4)) sum(r = 1)^(n...

`lim_(x rarr oo) (1)/(n^(4)) sum_(r = 1)^(n) r^(3)` is :

A

`(1)/(4)`

B

`1//3`

C

`1//2`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(LEVEL - II )|73 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|9 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) (1)/(n^(3)) sum_(r = 1)^(n) r^(2) is :

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =

lim_(n to oo) 1/(n^2) sum_(r = 1)^(n) re^(r//n) equals :

lim_(n rarr oo) (1-n^(2))/(sum n)=

lim_(x rarr 0) ((1+x)^(n)-1)/x is

lim_(x rarr oo) ((x+6)/(x+1))^(x+4) =

lim_(x rarr oo) (1-4/(x-1))^(3x-1) =