Home
Class 12
MATHS
lim(n rarr oo) ((1)/(1.2) + (1)/(2.3) + ...

`lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1)))` is :

A

1

B

`2//3`

C

`1//3`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(LEVEL - II )|73 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|9 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(n rarr oo) (1-n^(2))/(sum n)=

lim_(n rarr oo) ((1)/(1-n^(2)) + (2)/(1-n^(2)) +…...+(n)/(1-n^(2))) is :

lim_(x rarr 0) ((1+x)^(n)-1)/x is

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(n+r) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(x rarr oo) ((2n+1)(3n+2))/(n(n+9))=

lim_(x rarr oo)(1+4/(x-1))^(x+3) =

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.2.3)+ (1)/(2.3.4)+ (1)/(3.4.5)+....+ (1)/(n(n+1)(n+2))= (n(n+3))/(4(n+1)(n+2))