Home
Class 12
MATHS
lim(x rarr 1) (sqrt(1 - cos 2 (x - 1)))/...

`lim_(x rarr 1) (sqrt(1 - cos 2 (x - 1)))/(x -1)` :

A

exists and it equals `sqrt(2)`

B

exists and it equals `- sqrt(2)`

C

does not exist because `x - 1 rarr 0`

D

does not exist as LHL is not equal to RHL

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(LEVEL - II )|73 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|9 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 2) ((sqrt(1-cos {2(x - 2)}))/(x-2)) :

The value of lim_(x rarr 0) (sqrt((1)/(2) (1-cos 2x)))/(x) is :

lim_(x rarr 1) ((sqrt(x) - 1) (2x - 3))/(2x^(2) + x - 3) is :

lim_(x rarr 0) (sqrt(1-cos 2x))/(sqrt(2)x) is :

lim_(x rarr 0) (sqrt(1+x)-1)/x =

lim_(x rarr 0) (1-cos 4x)/(x2) =

lim_(x rarr 0) (sqrt(1+x) - sqrt(1-x)/x =

If f(1) =1 and f^(')(1) =2 then lim_(x rarr 1) (sqrt(f(x))-1)/(sqrt(x) -1) =

lim_(x rarr 1) (sqrt(x-1) + sqrt(x-1))/(sqrt(x^(2)-1)) =

lim_(x rarr 2) (sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x-2) is equal to :