Home
Class 12
MATHS
The value of constants a and b, so that ...

The value of constants a and b, so that :
`lim_(x rarr oo) [(x^(2) + 1)/(x+1) - ax - b] = 0`, is :

A

a = 0, b = 0

B

a = 1, b = - 1

C

a = - 1, b = 1

D

a = 2, b = - 1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(LEVEL - II )|73 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|9 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 1) (x^(2)-1)/(|x-1|) =

If lim_(x rarr oo) ((x^(2) + x + 1)/(x + 1)-ax - b)=4 , then :

lim_(x rarr oo) (1-2/x)^(x) =

The value of the constant alpha and beta such that lim_(x rarr oo) ((x^(2)+1)/(x+1) - alpha x -beta) =0 are respectively

lim_(x rarr oo) (2x^(2)-x-1)/(x^(2)+x-2) =

lim_(x rarr 0) ((1+x)^(n)-1)/x is

lim_(x rarr oo)((x)/(1+x))^(x) =

lim_(x rarr 0) (a^(x)-b^(x))/x =

lim_(x rarr oo) (1+2/n)^(2n)=