Home
Class 12
MATHS
lim(x rarr oo) (sqrt(x^(2) + 1) - root(3...

`lim_(x rarr oo) (sqrt(x^(2) + 1) - root(3)(x^(3) + 1))/(root(4)(x^(4) + 1) - root(5) (x^(4) + 1))` equals :

A

-1

B

0

C

1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(LEVEL - II )|73 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|9 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo) (1-2/x)^(x) =

lim_(x rarr 0) (sqrt(1+x)-1)/x =

lim_(x rarr 0) x/(sqrt(x+4)-2) =

lim_(x rarr 0) (sqrt (1+x^(2)) - sqrt(1-x^(2)))/x =

lim_(x rarr oo)((x)/(1+x))^(x) =

lim_(x rarr 0) (sqrt(1+x) - sqrt(1-x)/x =

lim_(x rarr oo) (1-4/(x-1))^(3x-1) =

lim_(x rarr 1) ((sqrt(x) - 1) (2x - 3))/(2x^(2) + x - 3) is :

lim_(x rarr 1) (sqrt(x-1) + sqrt(x-1))/(sqrt(x^(2)-1)) =

lim_(x rarr 0) (sin x)/(sqrt(x + 1) - sqrt(1-x)) is :