Home
Class 12
MATHS
lim(x rarr 0) (sin [cos x])/(1+[cos x]) ...

`lim_(x rarr 0) (sin [cos x])/(1+[cos x])` equals :

A

0

B

1

C

does not exist

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS(LEVEL - II )|73 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|9 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (x^(2) cos x)/(1- cos x) is

lim_(x rarr 0) (sin x^(o) )/x=

lim_(x rarr 0) (1-cos 7x)/(1- cos 9x) =

lim_(x rarr 0) (|sin x|)/x is

lim_(x rarr 0) (1-cos 4x)/(x2) =

lim_(x rarr 0) (sin x)/(x (1 + cos x)) is equal to :

lim_(x rarr 0) (1- cos x)/(x^(2)) is :

lim_(x rarr 0) (sin(4x)/(5x) )=

lim_(x rarr 0) (sin (pi cos ^(2) x))/(x^(2)) equals :